古今律厯考 (四庫全書本)/卷31

卷三十 古今律厯考 卷三十一 卷三十二

  欽定四庫全書
  古今律厯考卷三十一   明 邢雲路 撰律呂三
  律呂以後證辯
  造律
  劉昭後漢志曰伏羲作易紀陽氣之初以為律法建日冬至之聲以黄鐘為宫太蔟為商姑洗為角林鐘為徵南呂為羽應鐘為變宮蕤賓為變徵此聲氣之元五音之正也班固前漢志曰黄帝使伶倫自大夏之西崑崙之隂取竹斷兩節間而吹之以為黄鐘之宮制十二筩定十二律周官太師掌六律六同以合隂陽之聲陽聲黄鐘太蔟姑洗蕤賓夷則無射隂聲大呂應鐘南呂函鐘小呂夾鐘皆文之以五聲播之以八音國語泠州鳩對周景王曰周有七音黄鐘為宫太蔟為商姑洗為角林鐘為徵南呂為羽應鐘為變宫蕤賓為變徵禮記月令曰孟春之月律中太蔟仲春律中夾鐘季春律中姑洗孟夏律中中呂仲夏律中蕤賓季夏律中林鐘孟秋律中夷則仲秋律中南呂季秋律中無射孟冬律中應鐘仲冬律中黄鐘季冬律中大呂管子曰凡聽徵如負豬豕覺而駭凡聽羽如鳴鳥在樹凡聽宫如牛鳴窌中凡聽商如離羣羊凡聽角如雉登木凡將起五音凡首先主一而三之四開以合九九以是生黄鐘小素之首以成宫三分而益之以一為百有八為徵有三而去其乘適足以是生商有三分而復於其所以是成羽有三分而去乘適足以是成角曰主一而三之四開以合九九者三其一而為三一開也三其三而為九二開也三其九而為二十七三開也三其二十七而為八十一四開也是謂四開以合九九八十一之數黄鐘為五音之本故云小素本八十一益以三分之一之二十七通前百有八是為徵數乘亦三分之一也三分百有八而去其一之三十六餘七十二是為商數三分七十二而益其一之二十四合為九十六謂之復於其所是為羽數三分九十六去其一之三十二餘六十四是為角數此其法也後漢志註引禮運古註曰宫數八十一黄鐘長九寸九九八十一也三分宫去一生徵徵數五十四林鐘長六寸六九五十四也三分徵益一生商商數七十二太蔟長八寸八九七十二也三分商去一生羽羽數四十八南呂長五寸三分寸之一五九四十五又三分寸之一為四十八也三分羽益一生角角數六十四姑洗長七寸九分寸之一七九六十三又九分寸之一為六十四也三分角去一生變宫三分變宫益一生變徵自此已後則隨月而變所謂還相為宮爾雅曰管長尺圍寸曰長尺者九寸為尺也淮南子曰規始於一一不生故分而為隂陽隂陽合和而萬物生故曰一生二二生三三生萬物天地三月而為一時故祭祀三飯以為禮喪紀三踊以為節兵重三罕以為制三叅物三三如九黄鐘之九寸而宮音調因而九之九九八十一故黄鐘之數立焉黄者土德之色鐘者氣所鍾也日冬至徳氣為土土色黄故曰黄鐘律之數六分為雄雌故曰十二鐘以副十二月十二各以三成故置一而十一三之為積分十七萬七千一百四十七黄鐘大數立焉合而考之周禮爾雅國語禮記諸書在周泠州鳩管子皆周人月令在秦初淮南子在漢初皆最古者也史記漢書所推律吕之數一一皆本於此然則黄鐘起冬至為宫以生五聲二變十二律六陽六隂配十二月三分損益上下隔八相生自三而九為黄鐘九寸九九八十一分第而生之以至於亥之十七萬七千一百四十七之數此其法皆成周以來古人相傳之舊法也遷固但演其成數著為漢志竝未以己意增損其間後世不知而目為遷固之法議其失者則亦未稽諸故實耳
  律長短圍徑之說
  司馬遷律書
  本文         改正
  黄鐘八寸七分一宫   八寸十分一
  林鐘五寸七分四角   五寸十分四
  太蔟七寸七分二商   七寸十分二
  南呂四寸七分八徵   四寸十分八
  姑洗六寸七分四羽   六寸十分四
  應鐘四寸二分三分二羽 四寸二分三分二
  蕤賓五寸六分三分一  五寸六分三分二强四百八十六大呂七寸四分三分一  七寸五分三分二强四百○五夷則五寸四分三分二商 五寸○三分二弱二百一十六夾鐘六寸一分三分一  六寸七分三分一强一百九十八無射四寸四分三分二  四寸四分三分二强六百○二仲呂五寸九分三分二徵 五寸九分三分二强五百八十一蔡季通曰律書此章所記分寸之法與他記不同以難曉故多誤蓋取黄鐘之律九寸一寸九分凡八十一分而又以十約之為寸故云八寸十分一本作七分一者誤也今以相生次序列而正之其應鐘以下則有小分小分以三為法如厯家太少餘分强弱耳其法未宻也今以二千一百八十七為全分七百二十九為三分一一千四百五十八為三分二餘分之多者為强少者為弱列於逐律之下其誤字悉正之隋志引此章中黄鐘林鐘太蔟應鐘四律寸分以為與班固司馬彪鄭氏蔡邕杜夔荀朂所論雖尺有增減而十二律之寸數竝同則是時律書尚未誤也及司馬貞索隱始以舊本作七分一為誤其誤亦未久也沈括亦曰此章七字皆當作十字誤屈中畫耳大要律書用相生分數相生之法以黄鐘為八十一分今以十為寸法故有八寸一分漢前後志及諸家用審度分數審度之法以黄鐘之長為九十分亦以十為寸法故有九十分法雖不同其長短則一故隋志云寸數竝同也其黄鐘下有宮太蔟下有商姑洗下有羽林鐘下有角南吕下有徵字晉志論律書五音相生而以宮生角角生商商生徵徵生羽羽生宫求其理用罔見通逹者是也仲吕下有徵夷則下有商應鐘下有羽字三者未詳亦疑後人誤增也下云上九商八羽七角六宫五徵九者即是上文聲律數太蔟八寸為商姑洗七寸為羽林鐘六寸為角南呂五寸為徵黄鐘九寸為宮其曰宮五徵九誤字也以余考之黄鐘為宮林鐘為徵太蔟為商南呂為羽姑洗為角應鐘為變宮蕤賓為變徵此正法也馬遷律書本文書黄鐘宮太蔟商則是書林鐘角南呂徵姑洗羽應鐘羽夷則商仲呂徵則非或皆後人誤書何則即史遷推律呂相生之數與此不同故知後人之誤書也蔡氏正史文之誤皆是而獨於無射下小分云强六百○二以法推乃六百一十八較少一十六亦蔡氏之誤布耳今以蔡氏改正之法詳推之十二律皆置毎分二千一百八十七如求黄鐘以八十一乘毎分之數二千一百八十七得十七萬七千一百四十七為黄鐘之實故曰八寸十分一即九分之寸變為十分之寸一百分中之八十一分也求林鐘以五十四乗分數得十一萬八千九十八為林鐘之實故曰五寸十分四求太蔟以七十二乘分數得十五萬七千四百六十四為太蔟之實故曰七寸十分二求南呂以四十八乘分數得十萬四千九百七十六為南呂之實故曰四寸十分八求姑洗以六十四乘分數得十三萬九千九百六十八為姑洗之實故曰六寸十分四求應鐘以四十二乘分數得九萬一千八百五十四加三分二之一千四百五十八共九萬三千三百一十二為應鐘之實故曰四寸二分三分二求蕤賓以五十六乗分數得十二萬二千四百七十二加三分二之一千四百五十八得十二萬三千九百三十以較㽔賓之實少四百八十六加以四百八十六得十二萬四千四百一十六為㽔賓之實故曰五寸六分三分二强四百八十六求大呂以七十五乘分數得十六萬四千二十五加三分二之一千四百五十八得十六萬五千四百八十二以較大呂之實少四百五加以四百五得十六萬五千八百八十八為大呂之實故曰七寸五分三分二强四百五求夷則以五十乘分數得十萬九千三百五十加三分二之一千四百五十八得十一萬八百八較夷則之實多二百一十六減去二百一十六得十一萬五百九十二為夷則之實故曰五寸三分二弱二百一十六求夾鐘以六十七乘分數得十四萬六千五百二十九加三分一之七百二十九得十四萬七千二百五十八以較夾鐘之實少一百九十八加以一百九十八得十四萬七千四百五十六為夾鐘之實故曰六寸七分三分一强一百九十八求無射以四十四乘分數得九萬六千二百二十八加三分二之一千四百五十八得九萬七千六百八十六以較無射之實少六百一十八加以六百一十八得九萬八千三百四為無射之實故曰四寸四分三分二强六百一十八求仲呂以五十九乗分數得十二萬九千三十三加三分二之一千四百五十八得十三萬四百九十一以較仲呂之實少五百八十一加以五百八十一得十三萬一千七十二為仲呂之實故曰五寸九分三分二强五百八十一是其數也
  漢志曰易曰參天兩地而倚數天之數始於一終於二十五其義紀之以三故置一得三又二十五分之六凡二十五置終天之數得八十一以天地五位之合終於十者乗之為八百一十分應厯一統千五百三十九歲之章數黄鐘之實也繇此之義起十二律之周徑地之數始於二終於三十其義紀之以兩故置一得二凡三十置終地之數得六十以地中六數乗之為三百六十分當期之日林鐘之實也人者繼天順地序氣成物統八卦調八風理八政正八節諧八音舞八風監八方被八荒以終天地之功故八八六十四其義極天地之變以天地五位之合終於十者乗之為六百四十分以應六十四卦太蔟之實也孟康曰林鐘長六寸圍六分以乗長得三百六十分太蔟長八寸圍八分為積六百四十分也漢志置一得三又六乃三其二十五為七十五又六為八十一以天地之合終於十者乘之為八百一十分即黄鐘長九寸自乘九九八十一又以十因之為八百一十也厯十九歲為一章一統八十一章凡千五百三十九歲故曰應厯一統置一得二乃二其三十為六十以地中六數因之為三百六十分即林鐘長六寸自乘六六三十六又以十因之為三百六十也一期三百六十故曰當期之日人終天地之功故八八六十四以天地之合終於十者乗之為六百四十分即太蔟長八寸自乘八八六十四又以十因之為六百四十也卦六十四故曰應六十四卦蔡氏謂繇此之義起十二律之周徑葢黄鐘十其廣之分以為長十一其長之分以為廣故長九寸空圍九分積八百一十分其數相合則其周徑可以數定其言似是而非葢班固以八百一十應律一統為天三百六十當期之日為地六百四十應六十四卦為人皆牽强凑數正蔡季通所謂倚數配合為説而已其與積實之數無干也其謂三百六十當期之日者則本於淮南子所言一律而生五音十二律而為六十音因而六之為三百六十音以當一歲之日之文然淮南子指十二律而言亦未嘗指為林鐘為地也孟康遂謂林鐘長六寸圍六分為六六三百六太蔟長八寸圍八分為八八六十四以附會之果如所云則應鐘長四寸六分圍四分六釐徑止得一分五釐矣一分五釐之管涉於太細何以施吹何以成聲乎其乖舛亡論已至蔡季通所云十其廣之分以為長者謂廣九分以十分之寸因之每寸九十分九寸得長八百一十分云十一其長之分以為廣者謂長八百一十分九因七百二十九再加八十一為八百一十乃十一其長以九而一得空圍九分是其數似合而不知黄鐘九寸九分之寸也每寸九九八十一分九寸積七百二十九分蔡謂八十一則是謂八百一十則非也
  蔡邕銅龠銘曰龠黄鐘之宮長九寸空圍九分容秬黍一千二百粒稱重十二銖兩之為一合三分損一轉生十一律月令章句云黄鐘之管長九寸徑三分其餘皆稍短雖大小圍數無增減韋昭周語註曰黄鐘之變也管長九寸徑三分圍九分因而九之九九八十一故黄鐘之數立焉鄭康成月令註曰凡律空圍九分孔穎逹疏曰諸律雖短長有差其圍皆以九分為限漢志曰一黍之廣度之九十分黄鐘之長累九十黍之廣積八百一十分隋志牛宏辛彥之鄭譯何妥等叅攷古律度合依時代制律其黄鐘之管俱長九寸徑三分然圍徑長短與度而差故容黍不同晉前尺黄鐘容黍八百八粒梁法尺黄鐘容八百二十八梁表尺黄鐘三其一容九百二十五其一容九百一十其一容一千一百二十漢官尺黄鐘容九百三十九古銀錯題黄鐘容一千二百宋氏尺即鐵尺黄鐘二其一容一千二百其一容一千四十七後魏前尺黄鐘容一千一百一十五後周玉尺黄鐘容一千二百六十七後魏中尺黄鐘容一千五百五十五後魏後尺黄鐘容一千八百一十九東魏尺黄鐘容二千八百六十九萬寶常水尺律母黄鐘容一千三百二十隋志又云梁表尺三律宋鐵尺二律黄鐘副别其長短及口空之圍徑竝同而容黍或多或少皆是作者旁庣其腹使有盈虚蔡氏謂梁宋尺容受不同乃制作之疎晉前尺黄鐘止容八百八黍者失在徑三分古銀錯與玉尺玉斗合玉斗之容受與晉前尺三分四釐六毫不甚相逺但玉尺律徑不及三分故其律遂長而尺長於晉前尺一寸五分八釐葢自漢魏而下造律竟不能成而度之長短量之容受權衡之輕重皆戾於古大率皆由徑三分之說誤之也蔡氏又云班志以黄鐘八百一十分起十二律之周徑審度章以一黍之廣度之九十分黄鐘之長一為一分嘉量章以千二百黍實其龠謹衡權章以千二百黍為十二銖則是累九十黍以為長積千二百黍以為廣也夫長九十黍容千二百黍則空圍當有九方分乃是圍十分三釐八毫徑三分四釐六毫也毎一分容十三黍又三分黍之一以九十因之則一千二百也又漢斛銘文云律嘉量方尺圓其外庣旁九釐五毫羃百六十二寸深尺積一千六百二十寸容十斗嘉量之法合龠為合十合為升十升為斗十斗為石一石積一千六百二十寸為分者一百六十二萬一斗積一百六十二寸為分者十六萬二千一升積十六寸二分為分者一萬六千二百一合積一寸六分二釐為分者一千六百二十則黄鐘之龠為八百一十分明矣空圍八百一十分則長累九十黍廣容一千二百黍矣蓋十其廣之分以為長十一其長之分以為廣也自孟康以律之長十之一為圍之謬其後韋昭之徒遂皆有徑三分之說而隋志始著以為定論然累九十黍徑三黍止容黍八百有奇終與一千二百黍之法兩不相通而律竟不成本朝胡安定謂管長九十黍之廣内實十三黍三分黍之一其圍容九分者乃九方分也云圍九分者取空圍圓長九分耳以是圍九分之誤遂有徑三分之說若從徑三圍九之法則管止容九百黍積止六百七分半矣此胡氏破徑三分之說也以是定律皆與古不合又不知變律之法但見仲呂反生不及黄鐘之數乃遷就林鐘已下諸律圍徑以就黄鐘清聲以夷則南呂為徑三分圍九分無射為徑二分八釐圍八分四釐應鐘為徑二分六釐五毫圍七分九釐五毫其數不同遂使十二律之聲皆不當位反不如和峴舊樂之為得也魯齋彭氏曰黄鐘律管有周有徑有面羃有空圍内積有從長如史記論從長律厯志論從長及積東漢鄭氏注月令論羃東漢蔡氏月令章句論從長皆不易之論獨周徑之説漢以前俱無明文漢律厯志開端未竟東漢蔡氏始創為徑三分之說晉孟氏以後諸儒續為徑三分圍九分之說宋胡氏蔡氏又為徑三分四釐六毫圍十分三釐八毫之說然攷之古方圍周徑羃積率皆未有合嘗依東漢蔡氏所言徑三分以九章少廣内祖氏宻率乗除止得空圍内面羃七分七釐奇乃少一分九十二釐奇空圍内積實止得六百三十六分奇乃少一百七十三分奇如此則黄鐘之管無乃太狹葢黄鐘空積忽㣲若徑内差一忽即面冪及積所差忽數至多此東漢蔡氏之說所以不合也晉孟氏諸儒言徑三分圍九分又用徑一圍三之法雖是古率然古人大約以比圓田若以宻率推之徑一則圍三有奇假如徑七則圍當二十有二今依孟氏所言徑三分則圍長當九分四釐二毫一秒强不但止於九分也若依九分圍長之數則徑當止有二分八釐六毫二秒六忽强又不及三分也此晉孟氏諸儒之說所以不合也宋胡氏不主徑三圍九之說大意疑其管狹耳然所言徑長三分四釐六毫圍長十分三釐八毫亦用徑一圍三之率若依所言三分四釐六毫徑當得圍長十分八釐七毫六秒二忽强不但止於十分三釐八毫也若依十分三釐八毫圍長之數則徑止得三分三釐奇又不及三分四釐六毫也此宋胡氏之說所以不合也宋蔡氏說徑圍分數與胡氏同至於算法用圓田術三分益一得一十二開方除之求徑又以徑相乘以管長乘之用三分益一四分退一之法求羃積今姑依其說以九方分平置□又三分益一以三方分割置於九方分之外如此□共積十二方分其縱横可得三分四釐六毫强不盡二毫八絲四忽的如蔡氏之說但依此徑以宻率相乘則空圍内面羃不但止得九方分乃得九方分零四十釐六十毫五十七秒十四忽奇空圍内積實不但止得八百一十分乃得八百四十六分五百四十五釐一百四十二秒六百忽奇如此則黄鐘之管無乃太細乎考之方内之圓所占者不止四分三圓外之方所當退者又不及四分一以此知三分益一四分退一乃虚加實退算家大約之法此宋蔡氏之說所以又不能以盡合也今欲求黄鐘律管從長周徑羃積的實定數者須依蔡氏多截管候氣之說又以祖氏冲之宻率乗除方可葢祖冲之乃古今算家之最而蔡氏多截管候氣之說實得造律本原其說有前人未發者今宜依此說先多截竹以擬黄鐘之管或短或長長短之内每差纎微各為一管悉以此諸管埋地中俟冬至時驗之若諸管之中有氣應者即以此管分作九寸寸作九分分作九釐釐作九毫毫作九秒秒作九忽以合八十一終天之數及元氣運行自子至亥得十七萬七千一百四十七之數凡用此管三分損益上下相生由此又取此管九寸寸作十分分作十釐釐作十毫毫作十秒秒作十忽以合天地五位終於十之數乃以十乗八十一得八百一十分以八百一十分配九十分管知此管長九十分空圍中容八百一十分即十分管長空圍中容九十分一分管長空圍中容九分凡求度量衡由此乃以此管面空圍中所容九分以平方羃法推之知一分有百釐釐有百毫毫有百秒秒有百忽積而計之一平方分通有面羃一萬萬忽九平方分通有面羃九萬萬忽乃以此九萬萬忽依算經少廣章所載宋祖冲之宻率乘除得圓周長的計十分六釐三毫六秒八忽萬分忽之六千三百一十二又以圓周求徑計三分
  三釐八毫四秒四忽萬分忽之五千六百四十五又以半徑半周相乗仍得九萬萬忽内一忽弱通得面羃九平方分也既以周徑相乗復得面羃如此則黄鐘之廣與長及空圍内積實皆可計矣故面羃計九方分深一分管則空圍内當有九立方分深九十分管計九寸則空圍内當有八百一十立方分此即黄鐘一管之實其數與天地造化無不相合此算法所以成也算法既成之後或以竹或以銅别為之依其長各作八十一分以為十二律相生之法又依其長作九十分乃取九十分之分計三分三釐八毫四秒四忽萬分忽之五千六百四十五以合孔徑如此則圓長面羃與空圍内積自然無不諧㑹特徑數自八毫以下非可細分而算法積忽與秒不容不然耳至司馬光與范鎮論律鎮曰益州進士房庶嘗得古本漢書云度起於黄鐘之長以子穀秬黍中者一黍之起積一千二百黍之廣度之九十分黄鐘之長一為一分今文脱去之起積一千二百黍八字故自前世累黍為乏縱置之則太長横置之則太短今新尺横置之不能容一千二百黍則大其空徑四釐六毫是以樂音太髙皆由儒者誤以一黍為一分其法非是且漢志云一為一分者葢九十分之一當以千二百黍實管中隨其短長斷之以為黄鐘九寸之管得九十分其長一為一分取三分以度空徑合其數黄鐘之長九寸加一以為尺則律正矣是鎮意謂制律之法必以千二百黍實黄鐘九寸之管九十分其管之長一為一分是度由律起也光曰漢書正本之度起於黄鐘之長以子穀秬黍中者一黍之廣九十分黄鐘之長一為一分本無之起積一千二百黍八字是光意謂制律之法必以一黍之廣定為一分九十分則得黄鐘之長是律由度起也光鎮爭論前後三十年不決程迴著三器圖議曰體有長短所以起度也受有多寡所以生量也物有輕重所以用權也是器也皆準之上黨羊頭山之秬黍焉古人以度定量以量定權必參相得然後黄鐘之律可求八音五聲從之而應也迴謂以黍定三器三者尺為之本周尺也者先儒攷其制脗合者不一阮逸胡瑗累黍定尺既大於周姑欲合其量然於權不合宋祁取隋大業中厯代尺十五等獨以周尺為本韓琦累黍尺二其一亦與周尺相近司馬刻之於石光舊物也茍以是定尺合諸器矣夫自昔諸說之不同如此有是者有非者有似是而非者有是而未宻者以余論之古云黄鐘管九寸圍九分徑三分長八十一分容千二百黍此皆古人大率言之未著為宻率也故朱子曰古只說空圍九分不說徑三分葢不啻三分猶有奇也正謂是耳然從古無九十分為黄鐘并積八百一十分之說至劉歆典鐘律乃有本起黄鐘之長以子穀秬黍中者一黍之廣度之九十分一為一分十分為寸之說蔡季通信之謂為累九十枚黍度之廣積八百一十分為一龠之數皆非也考史遷云黄鐘長九寸長八寸十分一是以十分為寸以九約之為八寸十分一此其說最為近古可信也葢古法十其寸為尺九其寸為律觀蔡邕銅龠銘曰黄鐘之宮長九寸空圍九分乃章句又曰管者形長尺圍寸夫既曰九寸又曰一尺既曰九分又曰一寸則約十為尺約九為寸即如史遷所謂長九寸長八寸十分一之說也葢治律約十為九其數乃齊以為度則約為十其理一也古一為一分者去聲之分非平聲之分也劉歆誤認為平聲遂命黄鐘為九十分蔡季通等又演為八百一十分是已誤而益誤也季通既曰全數即十取九相生約九為十是明知約九為十矣乃曰積八百一十分夫十則為百分千分九則為八十一分七百二十九分乃何有八百一十分哉胡氏云黍實於管中十三黍三分黍之一而滿一分是一為一分也而以管之九寸九十枚黍度之得千二百黍為黄鐘之管是乃十其廣之分以為長十一其長之分以為廣也然以此治律則管長而狹矣葢約九為十者就此黄鐘九寸而約為十寸非有加也胡氏蔡氏則九十分真加九分矣夫圍九分仍舊貫之九分也而長乃加其十之一以此長且狹之管吹之何怪其不成聲耶胡安定謂徑三分為誤不知徑三分之誤不過毫忽間而八百一十分則實多八十一分其誤大矣若彭氏謂以管作九寸寸作九分以合八十一終天之數以九作十寸寸作十分以合天地終於十之數似得相約之法而乃亦謂以十乘八十一得八百一十分則猶之乎胡氏蔡氏也至謂管埋地中以候氣取其氣應者用之不知候氣之說皆屬偽為不足憑耳若房庶増之起積一千二百黍八字乃為妄増其欲於黄鐘之九寸加一以為尺則為贅疣温公論本無之起積一千二百黍八字良是而其以九寸為九十分則亦猶之乎房庶也所以晉梁以來諸尺制律各有容受不同皆坐此分寸不明之故非旁庣盈虚之致也惟程迴議三器壹禀於黍而宋祁取厯代尺十五等獨以周尺為本似為得之然則造律者必遵何術而可曰古樂亡矣所在者幸有此九寸九分之數千二百黍之文也舍此其奚之焉然而古尺不一莫辨真偽知何尺為九寸則舍黍又奚之焉必也定九寸為黄鐘以九分為寸空圍九分以實千二百黍算之葢以九寸歸千二百黍得毎寸一百三十三黍三分黍之一以九分歸一百三十三黍三分黍之一得毎分十四黍八一四八不盡置毎分一十四黍八一四八不盡以九九八十一分乘之得一千二百黍還黄鐘之原此其數也其長圍之數既定則徑自在其中約九為十約十為九無不可者如以十分為寸則分亦十釐亦以十數量圍徑如以九分為寸則分亦九釐亦以九數量圍徑均齊得所於黄鐘一無增損數既定矣考古稱秬黍出上黨羊頭山可用或謂地有肥瘠種有不同者然秬之言大也似宜於地美種大者用之其實黍則勿論縱横但以容千二百黍為準葢長之分寸與圍之分寸同則自無有餘不足之弊而分寸徑圍一皆從此出也程迴等論周尺為最想古代之玉尺銅尺或管今載在内府必有存者未之見耳倘見其器如前法約其分寸實以秬黍酌取其近千二百黍者為用以聲音正之即此且可辨尺與管之真偽又何論異同哉得黄鐘之管然後以勾股宻率布之而律即正矣勾股宻率見律原












  古今律厯考卷三十一
<子部,天文算法類,推步之屬,古今律歷考>

PD-icon.svg 本作品在全世界都属于公有领域,因为作者逝世已经超过100年,并且于1926年1月1日之前出版。