打开主菜单

欽定古今圖書集成/曆象彙編/乾象典/第029卷

曆象彙編 乾象典 第二十八卷 欽定古今圖書集成
曆象彙編 第二十九卷
曆象彙編 乾象典 第三十卷


欽定古今圖書集成曆象彙編乾象典

 第二十九卷目錄

 日月部彙考一

  易經離卦 豐卦 繫辭上傳 繫辭下傳

  書經周書洪範

  詩經邶風日月章

  周禮春官馮相氏

  禮記月令

  易緯稽覽圖

  管子四時篇

  漢書天文志

  淮南子天文訓

  劉熙釋名釋天

  揚雄方言日月運行

  班固白虎通日月

  魏張揖廣雅日月

  吳徐整長曆日月徑

  晉書天文志

  五代史司天考

  張子正蒙參兩篇

  明羅雅谷交食曆指界說 光景圖說 太陽光照月及地 明暗兩體

  相等圖說 明體大暗體小圖說 明體小暗體大圖說 大施小受圖說 小施大受圖說

   景之處所 光景相反圖說 體動景移圖說 景之作用 日月食合論 日月交食總

  圖說 太陽本行圖說 太陰朔朢本行圖說 實會中會視會 實會中會以地心為主

  實會中會圖說 見食隨地異時

乾象典第二十九卷

日月部彙考一编辑

《易經》
编辑

《離卦》
编辑

日月麗乎天。

《豐卦》
编辑

日中則昃,月盈則食。

《繫辭上傳》
编辑

縣象著明,莫大乎日月。

大全進齋徐氏曰:天文煥爛,皆懸象著明也,而莫大乎日月。

《繫辭下傳》
编辑

日月之道,貞明者也。

大全程子曰:日月常明而不息,故曰貞明。

日往則月來,月往則日來,日月相推而明生焉。

大全臨川吳氏曰:因日之往而有月之來,因月之往而有日之來。二曜相推以相繼,則明生而不匱。

《書經》
编辑

《周書·洪範》
编辑

日月之行,則有冬、有夏。

日月之行,四時皆有常法,變冬夏為南北之極,故舉以言之,日月之行,冬夏各有常度,喻人君為政,大小各有常法。張衡、蔡邕、王蕃等說渾天者,皆云周天三百六十五度四分度之一,天體圓如彈丸,北高南下,北極出地上三十六度,南極入地下三十六度,北極去南極直徑一百二十二度弱,其依天體隆曲。南極去北極一百八十二度彊,正當天之中央。南北二極中等之處,謂之赤道,去南北極各九十一度。春分日行赤道,從此漸北,夏至赤道之北二十四度,去北極六十七度,去南極一百一十五度,日行黑道,從夏至以後,日漸南,至秋分還行赤道,與春分同。冬至行赤道之南二十四度,去南極六十七度,去北極一百一十五度,其日之行處,謂之黃道。又有月行之道,與日道相近,交路而過,半在日道之裏,半在日道之表,其當交則兩道相合交,去極遠處兩道相去六度,此其日月行道之大略也。

《詩經》
编辑

《邶風·日月章》
编辑

日居月諸,出自東方。

日始月盛,皆出東方。

《周禮》
编辑

《春官》
编辑

馮相氏,冬夏致日,春秋致月。

訂義王昭禹曰:日為陽而實,故致於長短極之時。月為陰而闕,故致於長短不極之時。鄭康成曰:冬至日在牽牛,景丈三尺;夏至日在東井,景尺五寸。此長短之極,極則氣至,冬無愆陽,夏無伏陰。春分日在婁,秋分日在角,而月弦於牽牛,東井亦以其景,知氣至否。陸佃曰:黃道北至東井,南至牽牛,東至角,西至婁。夏至日在東井而北近極,則晷短而表景尺五寸。冬至日在牽牛而南遠極,則晷長而表景丈三尺。春分日在婁,秋分日在角,而中於

極星,則晷中而表景七尺三寸。夫日,陽也,陽用事則日進而北,晝進而長陽升,故為溫為暑。陰用事則日退而南,晝退而短陰勝,則為涼為寒。若日失節於南,則晷過而長,為常寒。失節於北,則晷退而短,為常燠。此四時致日之法也。月之九行,在東西南北,有青白赤黑之道各二,而出於黃道之旁。立春、春分,月循行青道而春分上弦在東井。立冬、冬至北旋黑道。立夏、夏至南從赤道。古之致月不在立而常在二分,不在二分之朢而常在弦者,以月入八日與不盡八日,得陰陽之正平故也。然日之與月,陰陽尊卑之辨,若君臣。然觀君居中而逸,臣旁行而勞,臣近君則威損,遠君則勢盛,威損與君異,勢盛與君同。月遠日則光盛,近日則光缺,未朢則出西,既朢則出東,則日有中道,月有九行之說,蓋足信也。

以辨四時之敘。

訂羲鄭鍔曰:辨字本亦作辯說者,謂見景之至否,可以辯說,其晷刻以正閏,餘使四時之敘,無有差忒。

黃氏曰:夏至日景極長,冬至日景極短,春秋分

平日景平,則日亦平致。言長短與平,各至其數。四時之氣定矣。於是而置閏,所謂以閏月定四時成歲也。

《禮記》
编辑

《月令》
编辑

季冬之月,日窮於次,月窮於紀。

次,舍也。紀,會也。日窮於次者,謂去年季冬日,次於元枵,從此以來,每引移次他辰,至此月窮盡,還次元枵。月窮於紀者,去年冬季,月與日相會於元枵,自此以來,月與日相會在於他辰,至此月窮盡,還復會於元枵。

《易緯》
编辑

《稽覽圖》
编辑

日春行東方青道,曰東陸。

夏日月行東南赤道,曰南陸。

天有十二分,以日月之所躔也。

《管子》
编辑

《四時》
编辑

日掌陽,月掌陰。

《漢書》
编辑

《天文志》
编辑

日有中道,月有九行。中道者,黃道,一曰光道。光道北 至東井,去北極近;南至牽牛,去北極遠;東至角,西至 婁,去極中。夏至至於東井,北近極,故晷短;立八尺之 表,而晷景長尺五寸八分。冬至至於牽牛,遠極,故晷 長;立八尺之表,而晷景長丈三尺一寸四分。春秋分 日至婁、角,去極中,而晷中;立八尺之表,而晷景長七 尺三寸六分。此日去極遠近之差,晷景長短之制也。 月有九行者:黑道二,出黃道北;赤道二,出黃道南;白 道二,出黃道西;青道二,出黃道東。立春、春分,月東從 青道;立秋,秋分,西從白道;立冬、冬至,北從黑道;立夏、 夏至,南從赤道。然用之一,決房中道。

宋祁曰:朱子文云:房字當作於字,蓋言月之行,其道雖多,然皆決於日之中道也。

《淮南子》
编辑

《天文訓》
编辑

積陽之熱氣生火,火氣之精者為日。積陰之寒氣為 水,水氣之精者為月。

日者,陽之主也,是故春夏則群獸除,日至而麋鹿解。 月者,陰之宗也,是以月虛而魚腦減,月死而蠃蛖膲。 日月者,天之使也。

日為德,月為刑。月歸而萬物死,日至而萬物生。

《劉熙·釋名》
编辑

《釋天》
编辑

日,實也,光明盛實也。

月,缺也,滿則缺也。

光,晃也,晃晃然也,亦言廣也,所照廣遠也。

景,境也,明所照處有境限也。

晷,規也,如規畫也。

曜,耀也,光明照耀也。

《揚雄·方言》
编辑

《日月運行》
编辑

躔歷行也,日運為躔,月運為逡。

《白虎通》
编辑

《日月》
编辑

天左旋,日月五星右行,何日月五星,比天為陰,故右 行。右行者,猶臣對君也。含文嘉曰:計日月右行也,刑 德放,日月東行而日行遲,月行疾何君舒臣勞也。日 日行一度,月日行十三度十九分度之七。《感精符》曰: 三綱之義,日為君,月為臣也。日月所以懸晝夜者,何 助天行,化照明下地,故《易》曰:懸象著明莫大乎日月。 日之為言,實也,常滿有節。月之為言,闕也。有滿有闕也,所以有闕何歸功於日也。八日成光二,八十六日 轉而歸功。晦至朔,旦受符復行,故《援神契》曰:月三日 成魄也。所以名之為星。何星者,精也,據日節言也。一 日一行適行一度,一日夜為一日剩,復分天為三十 六度,周天三百六十五度四分度之一,日月徑千里 也。所以必有晝夜,何備陰陽也。日照晝,月照夜,日所 以有長短何陰陽更相用事也。故夏節晝長,冬節夜 長。夏日宿在東井,出寅入戌。冬日宿在牽牛,出辰入 申。月大小何,天道左旋,日月東行,日日行一度,月日 行十三度,月及日為一月,至二十九日未及七度,即 三十日者過行七度,日不可分,故月乍大小,明有陰 陽。故《春秋》曰:九月庚戌朔,日有食之;十月庚辰朔,日 有食之。此三十日也。又曰:七月甲子朔,日有食之;八 月癸巳朔,日有食之。此二十九日也。月有閏餘何,周 天三百六十五度四分度之一。歲十二月,日過十二 度,故三年一閏,五年再閏,明陰不足,陽有餘也。故《讖》 曰:閏者,陽之餘。

《魏·張揖·廣雅》
编辑

《日月》
编辑

朱明曜靈,東君日也。夜光謂之月,日御謂之羲和,月 御謂之朢舒。

《吳·徐整長曆》
编辑

《日月徑》
编辑

眾陽之精,上合為日,日徑千里,周圍三千里,下於天 七千里。

月徑千里,周圍三千里,下於天七千里。

《晉書》
编辑

《天文志》
编辑

天旁轉如推磨而左行,日月右行,隨天左轉,故日月 實東行,而天牽之以西沒。

《五代史》
编辑

《司天考》
编辑

日食起虧自西,月食起虧自東。其食分少者,月行陽 道,則日食偏南,月食偏北;陰道,則日食偏北,月食偏 南。此常數也。立春後,立夏前,食分多,則日食偏南,月 食偏北;立秋後,立冬前,食分多,則日食偏北,月食偏 南。此黃道斜正也。陽道交前,陰道交後,食分多,則日 食偏南,月食偏北;陽道交後,陰道交前,食分多,則日 食偏北,月食偏南。此九道斜正也。

《張子·正蒙》
编辑

《參兩篇》
编辑

日質本陰,月質本陽,故於朔朢之際,精魄反交,則光 為之食矣。

虧盈法,月於人為近,日遠在外,故月受日光常在於 外,人視其終初如鉤之曲,及其中天也,如半璧。然此 虧盈之驗也。

月所位者陽,故受日之光,不受日之精,相朢中弦則 光為之食,精之不可以二也。

《明·羅雅谷·交食曆指》
编辑

《界說》
编辑

凡物體能隔他物之象,使不至目,則為暗體。若以體 之一面受光,而光復透射出於彼面,則為徹體如玻璃水 精是也。○目所司存,惟光惟色,而色又隨光發見,故解 徹體必以通光,解暗體必以其能隔他象。如月掩日, 而日全食,晝為之晦,恆星皆見爾。時太陽在外,體質 明顯又堅密無比,光力甚厚,乃為月體所隔,不能映 見。微光可證,月乃全非徹體,而全為暗體,○徹體有 二,通明之極,全無隔礙者為甚。徹雖則透光,而微雜 昏蒙者,為次徹。

光在本體為原光,其出而顯他物之象,為照光。○日 有原光,地與月皆借之為光者,照光也。謂顯他物之 象者,因他物之勢,隨施隨受,有原先後,無時先後也。 非如寒熱燥濕之類,漸及於物,力盡而止。

原光以直徑發照為最光,因而旁及者為次光。○日 光正照以直線,至於物體則為最光,有物隔之旁周 映射,則生次光,如雲之上,日體所照最光也。雲之下 不復見日,而猶有光,是次光也。

滿光者,原光之全體所發。少光者,原光之半體所發。 ○日未全出地平上所生光為少光,全升在上則生 滿光,日食時未全食則存少光,既以復圓,即得滿光。 景之四周,有最光遶之,即景為次光。○以景為明者, 誤也。以影為暗者,亦誤也。稱景為明暗之中庶,幾近 之,蓋全無光,乃為暗。今至夜子初人在地。景至深之 中,去最光極遠,而近目之物尚能別識,即見景中猶 存微光,不失為次光也。

最光所不及,為初景,次光所不及,則為次景。○景與 光并行,光漸微,景漸厚,故次景與最光相反,若初景 即次光也。

最光全不及之處,則為滿景,若受正照之微光,即為 缺景。○景與光正相反,無景之極,則為滿光;無光之 極,則為滿景。

光景圖

光景圖

光景圖說

假如甲乙為施光之物,丙為暗球,從甲出正照之光, 過丙球左右。其切丙之界者,得甲戊及甲己,從乙出 光,又得乙戊及乙丁,其庚戊辛為最光,全不及之處, 則滿景也。若庚戊辛戊以外,則甲乙光體之多分漸 照之。至乙丁、甲己乃全光之界,即自戊至丁至己。丙 球之景漸薄,以趨于盡矣。

《太陽光照月及地》
编辑

日、月、地三球體大小不等,地為靜體,日月則有諸種 行度,則有高庳內外,其去地去人,遠近不等,法當以 大小之比例,及其相遠相近之比例,推其施光受光 之體勢,乃得景之體勢,因而得交食之體勢。蓋交食 者,生于景,景生于光,不尋其本而求其末,無法可得, 其說五章。

明暗兩體相等圖

明暗兩體相等圖

明暗兩體相等圖說

一曰:有兩球於此,一為暗體,一為明體,而小大等。即 明者以半面施光,暗者以半面受光。○如圖,甲為明 球,乙為暗球,小大等,即其徑丙丁及戊己,各與甲乙 線為直角,而丙丁與戊己等,即甲丙、甲丁、乙戊、乙己 與甲庚、乙辛皆以半徑相等。而丙、庚、丁半球與戊、辛、 己半球亦相等。今於明球之旁,從丙從丁出兩切線 至暗球之旁,戊己、戊己與丙丁為平行線,即丙戊與 丁己亦平行線也。又因丙戊乙及丁己乙俱為直角, 即戊丙甲及己丁甲,亦俱直角,即丙戊、丁己線不能 割兩球,而止切兩周於丙於戊於丁於己,其所抱為 丙庚丁,為戊辛己,是甲乙兩球之各半也。若日月地 三球相等,而月與地皆以半面受太陽之光,如上所 說,則定朔,日食半,地面宜皆見之,安得復有南北不 等食分朢日。太陰全食時,纔食既即生光,安得復有 食甚時刻。及既內分今皆不然,可見三球無相等之 球。

明體大暗體小圖

明體大暗體小圖

明體大暗體小圖說

二曰:明體大,暗體小,則施光以小半,受光以大半。○ 如圖,甲為明球,乙為暗球,作兩切線為丙己,為戊庚。 從四切點作橫線,為丙戊,為己庚。甲既大球,即己丙 戊為銳角,丙己庚角為鈍角。如曰不然,或皆為直角, 即庚戊丙、戊庚己亦皆直角,兩切線必平行,而乙球 與甲球等,必不然也。或己丙戊反為鈍角,而丙己庚 反為銳角,即兩切線不能相交于癸,又不然也。今以 兩切線相交于癸,明己丙戊為銳角,丙己庚為鈍角。 即于丙丁戊弧內作負圈角,必鈍角矣。于己壬庚內 作負圈角,必銳角矣。故丙丁戊施光者不及半圈,己 壬庚受光者又不止半圈也。因此推知,太陽照地及 太陰,必各照其大半,而暗體所隔之日光漸遠,又漸 斂,漸進,以趨于一處,即景居暗球之背,不得不為角 體之形矣。又因此推求朢日先後,人目所見,太陰受 日之光,不長不消者,久之而後生魄。此為何故,蓋亦 因月體以大半受光,小半入于人目,光不輒轉而魄 未遽見。故未朢時已見全光,已朢後猶未失全光也。

明體小暗體大圖

明體小暗體大圖

明體小暗體大圖說

三曰:明體小,暗體大,則施光以大半,受光以小半。○ 如前圖,反論之,可明太陰何以照地,而地何反隔日 之光也。

大施小受圖

大施小受圖

大施小受圖說

四曰:大施小受,愈相近,則施者之小半愈小,受者之 大半愈大。○如圖,丙為小暗球,甲與乙皆大明球,作 庚未直線過三球心,以交於左右切線,其乙球之兩 切線交于午,甲球之兩切線交于未,即庚未長于乙 午,而庚丁未與乙辛午兩角,庚丁與乙辛兩線皆相 等,則庚未線與庚丁線之比例,大于乙午與乙辛,而 丁庚未角大于辛乙午角也。又庚未線過三球之心, 必截丁己、辛癸兩線為兩平分,而庚甲、丁乙、子辛兩 形內之甲與子皆為直角,則其餘庚丁兩角,并乙辛 兩角并皆等一直角,即兩并率等。兩并率之甲庚丁 角大于子乙辛角,各減之所存,庚丁甲角必小于乙 辛子角矣。次以庚丁甲及乙辛子不等之兩角,各減 庚丁未及乙辛午相等之兩直角,所存甲丁未角,更 大于子辛午角。又丁戊己弧內作負圈角,必等于甲 丁未角。辛壬癸弧內作負圈角,必等于子辛午角。辛 壬癸弧之負圈角,既小于丁戊己弧之負圈角,則辛 壬癸弧必大于丁戊己弧。夫辰寅巳與辛壬癸,相似 之弧也。丑寅卯與丁戊己亦相似之弧也大小圈左右各有切 線,其切點過分圈之線,其所分大小圈分各相似,其大小兩弧亦相似。即辰寅巳弧亦 大於丑寅卯弧。可見明球在近,比在遠者,尤能照小 暗球之多分也。○因此推知,日全食而視為大者,日 體去月體遠故也。日全食而視為小者,日體去月體 近故也。何以分遠近日與月,俱有自行圈與地不同 心,其行於自行圈之上下為最高最庳,則為距地之 遠近,因生景之大小也。日既全食矣,又何以分大小, 月掩日至,既有時晝晦,恆星皆見,蟲飛鳥棲,此為全 食。而大月在日內,從中掩蔽,雖至食既,而其四周日 光皆見,曆家謂之金環,此為全食而小矣。若然者,日 與月與地相去,或遠或近之所繇生也。

小施大受圖

小施大受圖

小施大受圖說

五曰:小施大受愈相遠,則施者之大半加小,受者之 小半漸大。○如圖,甲乙皆為小明球,丙為大暗球,乙 去丙遠于甲,作各切線過三球心之直線,皆如前次。 從暗球心丙至各切點作丙丁、丙己、丙庚、丙辛各半 徑,得丙丁為丁壬之垂線,丙庚為庚癸之垂線。而丁 與庚皆為直角,丙丁與丙庚兩線又等,則丙癸線與 丙庚半徑之比例,大于丙壬與丙丁。而丙庚、癸角又 大于丙丁壬角也。依顯,丙辛癸角亦大于丙己壬角。以并前率為庚丙辛合角,亦大於丁丙己合角,而其 弧庚戊辛必大於丁戊己。可見小明球照大暗球,愈 遠愈照其多分也。今依本圖,設丙為地外切線癸辛也。 以內為地景日光過丙,大球所出景。甲乙兩小球為月體,其兩 小球之小大既等,則同以外切線為外光之界,或為 內景之界,惟因月體循本輪,行時居上周。如乙則去 地遠時居下周。如甲則去地近,以是月食之分數有 多有寡,月居影厚處,如甲左右則食多,月居影薄處, 如乙左右則食寡。故曰:月食有多寡者,亦相距或遠 或近之所由生也。

景之處所编辑

凡光以直線照物體,其無光之處,則有景之處也。欲 於交食時求影所在,理不異此。蓋月與地能出景者, 不在其受光之面,或其左右必於受光反對之面,日 光不照之地,在日食則為月景之處,在月食則為地 景之處矣。說二章。

光景相反圖

光景相反圖

光景相反圖說

一曰:景與光所居正相反。○暗體得光于此面,射影 于彼面,是景之中心與原光之心、暗體之心參相對, 如一直線,則暗體隔光于景,使原光之心恆居一線 之末界,其正相反之彼界,其景之心在焉。如曰:不然, 設原光在甲,其照及乙。乙為暗體,隔光生景,據云景 不射丙丙者,與甲正相對之處。為甲乙丙直線而斜射丁,則乙 甲丁者,角也。有角則有幾何,凡幾何皆分之無窮,能 出直線至于無數而皆至乙丁邊。夫甲既為原光之 體,其所照必以直線出之試諸儀器,足以為證。即乙丁皆在受 光之地,何自能為乙暗體之景乎。因此,明景與光正 在相反之兩界,論暗體者其受光之面,必向光所出 之原界,其生景之面必向景所射之彼界,亦正相反 也。論日與月獨至兩交之處而有食,亦依此理。

體動景移圖

體動景移圖

體動景移圖說

二曰:明暗兩體任一運動,景隨之移。○試以暗體移 動,其所借之光隨處不一,即所生之景亦隨處不一。 蓋景與光既如一直線,即暗體所居定為景之末界, 如直線之首,首移而線尚不移,則是曲線非直線也。 又試以明體移動,設甲為明體,乙為暗體,乙丙為影, 則甲乙丙如一直線。如曰:明體甲移至丁,丁仍照乙, 而乙尚射景至丙,則丁乙丙猶直線也。有是理乎。 問太陽照室,僅通隙光,光照牆壁,奕奕顫動,太陽既 自順行,牆隙仍無遷變,則此顫動為從何來。或者光 與景未必定為直線而能微作曲勢乎。曰:西古博物 者亞利斯多言,空中嘗有浮埃,輕而不墜,微而不顯。 莊周氏謂之野馬,或亦稱為白駒,幽室之內,原光既 微,次光反厚,即顯此物在于光中,紛入沓出,能亂光 景之界,使目視景絪縕浮動,而寔非景動,乃景之界 線為浮埃所亂,致使其然也。更以氣為證,今觀太陽 出地,地面以上多生蒙氣,氣在日體與人目之間,即 見日之光界亦如顫動。非獨日也,日中晴朗,切視地 面光耀閃爍如波浪然,熾炭在罏炭之四周,火光煜 煜亦如顫動,凡若此者一皆繇氣而生,在日在地在 炭,固無顫動之理,是以景必繫於暗體,如輪必繫於 樞軸,光上景即下,光東景即西,必相對也,無相就也。 故太陽照地其光繞地一周,則景在其相衝之界亦 繞天一周。蓋日光從其本天,直射至於地面,而景在 地之彼面,亦直射至于月,天第日體常依黃道中線, 則地景亦常依黃道中線,而月行常出入黃道中線 之內外,是以月體與地景不得恆相遇合。大都不合時多,合時少,故日月不食時多,食時少。以此。

《景之作用》
编辑

月與地若各以其景相酬報,然如月朢則地景隔日 光,令月不受照,有時失滿光,有時全失光也。至月朔, 則月體隔日光,令地不受照,有處射滿影,有處留少 光而已。說三章。

一曰:月食于地景。○月食在朢,緣日月相對,其理明 矣。獨謂闇虛為地景者,或致疑焉,今解之。月對日受 光,藉非日月之間,有不通光之實體,為其映蔽,則何 繇阻日光之直照。若天體及空中之火、空中之氣,皆 通明透徹不能作障,使月失光也。即金水二星亦是。 實體有時居日月之間,然其景俱不及地,GJfont能過地 及月乎。則知能掩月者,惟有地體一面受光,一面射 景,而月體為借光之物,入此景中無能不食,半進而 半食矣,全進而全食矣。

二曰:日食者,月揜之。○恆言月在內,去人近,日在外, 去人遠,故定朔時,月體能揜日光。是已第金水二星, 亦皆時在日內,又皆不通光之實體。水星雖小,金星 則大於月也,何獨月能食日乎。曰二:星雖有時在日 內,則去人甚遠,遠則視徑見小,不能揜日百分之一 二。而日光甚盛,所虧百之一二,非目力所及。且二星 比月去日更近,所出銳角之景更短,不能及地面也。 若月體之大,雖不及太白,而去地甚近,去日甚遠,一 指足蔽泰山,又何疑乎。由此言之,求一實不通光之 體,全揜日體者,惟月為能。又自西而東,不及三十日, 而周其行度較于諸天最為疾速,故每朢定朔,皆同 經度,皆能有食其不食者,繇距度不及交耳。

三曰:因景之徑生多變易。○月以距度廣狹,為食分 多寡,一因去交有遠有近,去黃道中線有正有偏;一 因入地景有淺有深故也。今論其全食者,而大小遲 疾猶多變易,曾非一定。蓋日在自行本天,月在小輪, 相距遠近往往不等,日距月近,較距遠時更照月體 之多分,從月體出景更短,其景至地更小,則日雖全 食,月體見小,歷時亦速也。日與地亦然。以兩體相距 之遠近為地景之大小,使月食時入于地,景在其近 末之銳分,則闇虛之體見小,食分少,歷時速,皆因三 體之相距遠近,以生大小遲疾,地景月景皆無一定 之徑,致令隨時變易如此。○若月景地景二徑之小 大又自不等,故日食盡於食,既而月則食,既以後尚 有既內餘分,蓋地景大於月景,故兩食皆全其虧,復 遲疾無能不異矣。又月食,天下皆同,日食則否。日食 則此地速,彼地遲,此地見多,彼地見少,此地見偏南, 彼地見偏北,無不異也。月食則凡居地面者,目所共 見,其食分大小同虧,復遲疾同,經歷時刻同。唯所居 不同子午線者,則見食之時刻先後不同耳。蓋月一 入景,失去借光,更無處可見其光也。又概論天下日 食應多于月食,為二徑折半,其近交時加以南北視 差,易相逮及。故論一方則日食應少于月食,為月食 共見,日食因地故。

《日月食合論》
编辑

日食與月食不同勢,食日謂之障食,食月謂之藏食。 何謂障食。日為諸光之宗,月與星皆從受光焉。月之 食日,非真食日也,定朔則地與月與日自下而上為 一線相參直,月本暗體,今在日與地之間,以暗體之 上半受光于日,以下半射景於地,如屏蔽然。特能下 揜人目,而不能上侵日體日之原光自若也。是故人 見為食而實非食也。何謂藏食。定朢則日月相對,日 光正照之,月體正受之,人目正視之。若于此際,經度 相及,適及兩交,日與地與月,亦為一線相參直,而地 在日與月之間,地既暗體,以其半體,受光于日,以其 半體射景于月,若月體全入于景中,則純為晦,魄必 待出于景際,然後蘇而生明,如沒而復出者然。是則 可謂真食也。之,日月兩曜,若同行一道之上,則每 朔每望無不食矣。日月地三體若并不居一直線,則 永無食矣。惟各行於一道時,及於兩交,故日與月皆 隔五月而一食,或六月而一食。歲歲大率有之,不食 者半食於夜,日食則此方所見,他方所不見耳。其食 也,日體恆居一直線之此界,其彼界則月體地體疊 居焉。月居末界,即月面之日光食於地景矣。地居末 界,即地面之日光,食於月景矣。

日月交食總圖

日月交食總圖

日月交食總圖說

如上圖,甲為地,巳為日,卯辰圈為黃道,乙丙為白道, 其大距兩距之最遠五度弱二分。丁戊為兩交即龍頭龍尾亦名羅GJfont計 都,論月食,日照地球,其光自庚辛,至地切兩旁,過之 而復合于壬,自甲至壬,角體之形為地景。地景之心 恆隨太陽而行黃道中線,若躔處,去兩交遠,二徑折 半小于兩道之距度分,月行本道,從旁相過不能逮 及,則不食矣。若正遇于兩交,或交之左右二徑,折半 大于二道之距度分,則兩相涉入,月為之食。其食分 多寡,在距度廣狹。距度廣狹,在去交遠近也。論日食, 則人目所見恆在地面,推得實會仍須推其視會。若 僅據實會,則是地心之見食,非地面之見食。凡有無 多寡,加時先後,悉皆乖失矣。如圖,丁為月,或正居于 兩交,或在交之左右,日月二徑之各半合之,小于距 度分,則月能掩日,日為之食,不然則不食也。所謂實 會視會,兼推則合者,地面所見,推食于地平以上,至 天頂之正中,則獨推實會,便為視會。自此以外,地面 所見,先後大小,遲疾漸次不同。如圖,人在地面癸,依 丁,月之徑,適滿太陽之庚辛徑,則見為全食。若人在 地面子依丁月之徑,乃見兩切線所至,為己寅,則月 掩太陽,止于己庚半徑,見為半食矣。大凡日欲食時, 月不能離躔道一度強,自此以上無緣相涉。故定朔 之日有食時少,無食時多也。

太陽本行圖

太陽本行圖

太陽本行圖說

甲為地球,在天心,其大小之比例,難可計算。略言之, 則地之與天,若尺土之與大地也。如圖,外大圈為黃 道,與地同心。內圈為太陽本天,其心在乙。乙之離地 心,依第谷算,為全數十萬分之三千五百八十四,約 之為百分之三有半也。其最高今時在鶉首宮六度, 為丙。太陽右行從辛過丙一周天而復于辛,為三百 六十五日二十三刻三分四十八秒。是謂歲實。任躔 某宮某度分,皆以地心甲為主。而地心所出直線,至 戊黃道指為太陽之實行。其平行則又以本圈之乙 心為主。故人在地所測之實行,時速時遲,而太陽因 最高,在北任分本圈,則北為大半。故北六宮之日數 多於南,六宮幾八日有奇也。

依此見,求太陽之躔度,必用兩法。一者,定其本行。如 隨乙丁己直線窺之,從乙心見黃道上之己點,二者 定其實行。如隨甲丁戊窺之,乃從地心見黃道上之 戊點,先得其平行,又以加減求實行。而平實之差為 戊巳弧,以甲丁乙三角形求之即得也。其自丙過秋 分至庚兩行之差,必減平行而得實行。自庚過辛春 分至丙,則加于平行,而得實行。若用表則從丙最高 起算,或從庚最庳起算,至日體之本度為引數,以求 加減之度。

太陰朔朢本行圖

太陰朔朢本行圖

太陰朔朢本行圖說

月離之術,依歌白泥論,有本圜,有本輪,有次輪。本輪 之心,依本圈之邊滿一轉。即次輪之心,依本輪之邊 得兩轉。故朔朢時,月體皆在次輪之最近。最近者,近 於本輪之心也。因是不用次輪,但以最近處為界,得 圓圈月離曆指,謂為本輪之內圈。此可名朔朢之小 輪也。

假如丙丁戊為太陰朔朢時之本圈,則與地同心因無 差故設為同心本輪為乙丙丁,其心在本圜之邊。甲右距日得每日十二度一十一分,其最高在乙,最庳在己。月 體又居次輪之邊,左行自乙至丙,而己而丁,謂之引 數。最外有黃道為辛庚,若從地心出,直線上至黃道 而次輪心正居此線之上,則所指者,為太陰之平行 度分也。又從地心出直線上至黃道,而月體正居此 線之上,則所指者為太陰實行度分也。凡月轉或在 高或在庳,正當一宮初度乙也或七宮初度己也,則平行, 即是實行。過此必有兩行之差,則以差數加減于平 行度分,得其實行度分。又月在乙丙己半轉,則以減 得之;若在己丁乙半轉,則以加得之。以在朔朢,故平 實行。相距之極大差,不過四度五十八分二十七秒 甲丙甲丁是也。過此為兩弦之差,則更少。與交食無與月離 曆詳之。若用不同心圈論,則并不用此本輪其加減 平行度分,而得實行度分,理則一也。○因日月以平 實分本行,故平朔、平朢時,兩體未必正相合,正相對。 凡實會之,或先或後,日月各以其平行直線相遇而 合為一直線,則是中會。

實會中會視會编辑

《測天約說》言:日月之行有隅照相距三之一,有方照相距四之 一,有六合照相距六之一,然悉無交食。而獨相會朔也亦名合會, 相對朢也亦名照會,則能有食。故本篇所論者,止于相會相 對也。抑會者,總名也。細言之,有實會、有中會、有視會, 三者皆為推步之原。故言交食之術,必先言相會相 對。言相會相對之理,必從實會中會始。

實會中會以地心為主编辑

實會者,以地心所出直線上至黃道者為主,而日月 五星兩居此線之上,則實會也。即南北相距非同一 點,而總在此線正對之過黃極圈,亦為實會。蓋過黃 極圈者,過黃道之兩極而交會于黃道,分黃道為四 直角者也。則從旁視之,雖地心各出一線,南北異緯。 從黃極視之,即見地心所出二線,東西同經,是南北 正對如一線也。是故謂之實會。若月與五星各居其 本輪之周,地心所出線上至黃道,而兩本輪之心,俱 當此線之上,則為月與五星之中會。日無本輪本行 圈,與地為不同心,兩心所出則有兩線。此兩線者,若 為平行線,而月本輪之心正居地心線上,則是日與 月之中會也。蓋實會,既以地心線射太陰之體為主, 則此地心線過小輪之心,謂之中會矣。若以不同心 圈之平行線論之,因日月各有本圈,即本圈心皆與 地心即黃道心有相距之度分,即日月循各本圈之周右 行,所過黃道經度,必時時有差與地不同心故也,其從地心 出直線過日月之體,上至黃道。此所指者,為日月之 實行度分也。設從地心更出一平行直線,與本圈心 所出直線偕平行,而上至黃道。此所指者,為日月之 平行度分也。蓋太陽心線與地心一線平行,太陰心 線亦與地心一線平行。恆時多不相遇,至相遇時,兩 地心線合為一線,則是日月之中相會。若太陽實行 之直線與太陰實行之直線合為一線,則是日月之 實相會。合會望會,皆有中有實,其理不異。

實會中會圖二

實會中會圖二

{{{2}}}

{{{2}}}

實會中會圖說

先依小輪法作圖,甲為地心,亦為黃道心,亦為太陰 本圈心。太陰與地同心者,為用本輪,故蓋本輪周即太陰圈心繞地心之周其理一也乙為 太陽本圈心與地不同心。太陽在丁,太陰在戊,甲戊丁線 直至黃道圈,得辛,指日月實相會之度。如太陽在丁, 太陰亦在甲辛直線上為庚,而此線至黃道圈,得丙, 即指日月實相朢之度。若太陰在癸,與太陽不同一 線之上,乃過月本輪之心己,而至黃道壬,此直線所 指,則日月中相會之度也。如月在庚,從地心出平行線,甲子與甲壬太陽平行為一線,而至黃道子,亦指 日月中相朢之度矣。

次依不同心圈法,如後圖。黃道與太陽之本圈皆同 前,獨太陰無本輪,而易為本圈。其心與地心不同,在 甲,乃在丙,此亦以日月並居一直線為實會。如太陽 在丁,太陰在本圈之邊戊,地心所出甲戊丁線至辛, 則所指為實會。而正對月體至黃道寅,則所指為實 朢。若中會中朢,則以平行線為主。蓋甲壬為地心所 出直線。既偕太陽本圈心所出,過日體之直線,乙丁 為平行線,又偕太陰本圈心所出,過月體之直線丙 庚為平行線,則是兩偕行之直線合為一甲壬而至 黃道。故所指者,為日月中相會之度也。其至相對之 黃道上為癸,則所指者,為日月中相朢之度。設過此 交會之時,太陰在丑,則月圈心出者為丙丑線,地心 出者為甲己線。兩線自偕為平行,而甲壬與乙丁自 偕為平行,甲壬甲己不得合為一線矣。故地心所出 之兩偕行線,能合為一甲壬者,必指中交之度為日 月相會之共界也。

《見食隨地異時》
编辑

月食分數,天下皆同。第見食時刻,隨地各異,何也。人 各就所居之地,目力所及者則見月食,而各所居地 皆以子午正線為主。若其地同居一子午線者南北地緯 雖異東西地經則同,則所見月食之分數、遲速皆同也。若地易, 子午線易,則時刻并易矣。所以然者,時刻早晚因太 陽行度,隨人所居,各以見日出入為東西,為卯酉,即 以日中為南,為子午,而平分時刻。故月食時必本地 之日未東升或已西沉,乃得見之。若在其晝時刻,不 可得見也。天啟三年九月十五夜朢月食,順天府及 南北同經之地,則初虧在酉初一刻一十二分,食甚 在戌初初刻,復圓在戌正二刻一十三分各筭外。高 麗及其同經之地,即初虧在酉末戌初。而西洋意大 里亞諸國,日尚在天頂為午正,則不見月食。以里差 推之,西洋之初虧在巳正三刻四分,食甚在午正一 刻七分,復圓在未初三刻一十分各算外。雖月入景 七分五十六秒,所居宮度,彼此遠近皆同而以里差。 故彼地彼時,太陽在午正二十二分,太陰反在子正 二十二分,食甚正在日中,何從見之。今壬申年九月 十五日夜,望月食初虧在卯初三刻,則陝西四川等 處得見,南京山東等近海東境不可得見也。秦蜀之 子午異于東方之子午故。

今以順天府推算本食,因定各省直之食時,宜先定 各省直視順天子午線之里差幾何,後以其所差度 數,化為所差時刻,每一度應得時四分,向東以加于 順天推定時刻,向西則減,乃可得各省直見食時刻 也。若日食則其食分多寡,加時早晚皆係視差。東西 南北悉無同者,必須隨地考北極高下,差其距度;隨 地測子午正線,差其經度。乃可定。其目見器測之視 時定子午術,見西測食略中法。于當身所居,目見器 測,考定一月食之時刻,與先所定他方之月食時刻 較算,或兩地兩人同測一月食彼此較算,乃以所差 時刻得所差度分也。

前順天府所推月食時刻,并具各省直先後差數,因 未得諸方見食確數,無從遽定地之經度。但依廣輿 圖計里畫方之法,略率開載耳。既而咨報多相合者, 然非甄明之輩,躬至其地測極高下,見食早晚,終未 敢以耳聞臆斷勒為成書也。左方所記,政所謂略率 開載者,欲求決定,當GJfont異日。故稱約加約減焉。 南京應天府及福建福州府約加四分凡一十五分為一刻。 山東濟南府約加五分。

山西太原府約減一刻○九分。

湖廣武昌府河南開封府約減一刻。

陝西西安府廣西桂林府約減二刻○四分。

浙江杭州府約加十二分。

江西南昌府約減一十分。

廣東廣州府約減一刻○五分。

四川成都府約減三刻○七分。

貴州貴陽府約減二刻○八分。

雲南雲南府約減四刻○八分。


PD-icon.svg 本作品在全世界都属于公有领域,因为作者逝世已经超过100年,并且于1923年1月1日之前出版。