Page:Gujin Tushu Jicheng, Volume 029 (1700-1725).djvu/106

此页尚未校对

又甲子未形,求未甲邊,其法全數。與子「未邊。」若 未角之割線:與未甲邊。得九七二一○六八, 庚未弦。一九九九四七八四平分之,得九九九七三九二午未 也。內減未甲,餘二七六三二四午甲也。

庚己未弧與半圈之較,二度三十六分五十九秒,癸 未也。平分之,得一度一十六分二十九秒,乙庚午角 也。求正弦得二二八二四四,乙午線也。

乙午甲形求甲乙,用勾股法得三五八,三八八,即兩 心之相距。

圖

又求乙甲午角其法午甲邊與《全數》。若午乙邊:與午乙之切線。得八二六○三七四。其弧三十九度三十三分,為壬丙。以加壬戊四十五,得八十四度三十三分。以減天正象限九十度,餘五度二十七分為最高過夏至之數。

此秋分前數與春分後數較,差三分,然可不論。蓋測 午正太陽之高,或多或寡,所差一分,即此算內當差 一度。今算內差三分,則兩測中有差三秒者三,秒居 一度中,為三千六百分之三,安從覺之?若兩心之差, 因此三分之差,亦復不合,然其較為一千萬分中之 二十八至微矣。

右二法皆用《天元》四十五經度。若用《天元》六十經度, 則一經度之緯度十二分五十六秒,每緯度一分當 八刻。若用七十經度,則緯度一分當十四刻。若春分 前四十五度,秋分後四十五度,亦可用,但蒙氣多,難 定其確數耳。

《古今測候》最高,所得前後各異。今錄取三家,以備參 考。

《意罷》閣於漢景帝七年壬辰迄崇禎元年戊辰,為一 千七百七十七年。多祿某於晉永和七年庚辰迄崇 禎元年,為一千五百八十八年。所測太陽最高,其法 先求夏至之日。

從天正春分迄夏至,其視行得九十四日四十八刻。

圖

日九十六刻「夏至迄《秋分》,得九十二日四十八刻,共一百八十七日。以日率求平行」,則九十四日四十八刻,行九十三度○九分;九十二日四十八刻,行九十一度一十一分。

如上圖甲為太陽本圈心乙為地心丙為春分丁為

圖

秋分戊為夏至己為冬至兩至線與兩分線遇於乙為直角次作乙甲辛遇兩心線辛為最高之點其戊丙戊丁兩弧并之多於半周天則最高在丙戊丁弧內又丙戊弧大於戊丁則最高心在丙乙乙戊兩線以內亦在春分後夏至前

如甲。次從甲,作庚甲、壬癸甲午兩直線,相遇於甲,為 直角,與丙乙、乙戊各平行。夫丙戊弧九十三度○九 分,戊丁弧九十一度一十一分,并得一百八十四度 二十○分,平分之,各得九十二度○十分為丙庚丁 庚。丁庚內減丁戊平行一象限,餘○度五十九分,為 戊庚弧。其正弦一七一六為乙子句,丁庚內減癸庚 天正一象限,餘二度○十分,為癸丙弧。其正弦三七 八○,為甲子股。用句股法得四一五一,為甲乙弦,即 兩心之相距。

又求甲乙子角,其法:「子乙邊。」與子甲邊。若全數, 與《甲乙》子角之切線。得「二二○二七。」其弧六十 五度三十五分,日躔春分後至最高之點,為實沈五 度三十五分。

兩心相距為十萬之四千一百五十一,約之為百分 之四,以較前第一法所得之數,下無互異,其較為十 萬之五百八十一兩,得數不等,其元測必不等。然此 古法以日躔天正夏至之時刻為根,夏至之定時最 為難得。何者?夏至後天元一經度,得緯僅一十三秒。 若北極出地四十度之處,用一丈之表,測午正日軌 高得二十六度半,彊其景為千萬之四百九十八萬 五千八百一十六。若加十三秒之景,應加千萬之六 十五分,約之為十萬之六分,彊通之為六微,雖復巧 手明目,何從覺之?又本地本時蒙氣之映高亦得二 分四十○秒。又天正夏至未確,若先後一日,即最高 之處及兩心相距必前後若干度分。以此論之,纖芥 參差,諒無足怪,乃愈見斯人之不為牽合,斯術之最 為密親矣