Page:Gujin Tushu Jicheng, Volume 032 (1700-1725).djvu/30

此页尚未校对

去人有遠有近,當求其大小遠近之比例,推其施光、 受光之體勢,乃得交食之體勢。今設兩球大小等,一 暗一明,明者半面施光,暗者半面受光,無分遠近,未 有交食者也。若明球小,暗球大,暗以小半受光,明以 「大半施光,此為太陰照地,而地受其隔日之光也。凡 大施、小受,施以小半,受以大半,二體彌近。大者施光 之小半彌小,小者受光之大半彌大。」此即日居最卑, 而食之勢也。若夫小施、大受,則又二體彌遠,而施者 亦彌小,受者亦彌大。此月食之分數,有多有少。而月 近地居景厚處,食分多,遠地居景薄「處食分少」,總由 大小遠近之比例而生也。

又詳景之處所在受光之背面,乃因月與地勢能出 景。在日食則為月景,下至於地,月食則為地景,上至 於月,景形為角形,緣出景之圓體,與太陽大於地,於 月之倍數相當也。「月朢月有食」,乃地景隔日光,令月 不受照,有時失滿光,有時全失光。「月朔日有食」,乃月 隔日光,令地不受照,有處射滿景,有處存少光,皆係 景之作用也。至論月在景之光色,或赤或雜、或青黑 色,皆有占驗,或生於氣景,或映於旁光,或染於近地 之清蒙氣,皆能令月現種種色也。論食之期,二景既 隨日月所至,終古不爽。即有定候,一在定朔,一在定 朢。當食必食,多寡先後上下,千百世可知。此則本卷 益加詳焉。

第二卷,詳交食諸類,及推交食之原與《簡法》,蓋日月 之行,雖有隅照、方照、六合照等,悉無交食,獨相會相 朢。亦名合會照會「有食,詳之則有實會、中會、視會」之別,皆為 推步之原。三會或較於地心,或較於地面,各異,實會、 中會相距又無定度。必先推求各元法,從本天大小 圈以曆元,並以三角形細推,乃能成表,為《密求法》,以 便後人。蓋因得其所以然,而後握簡御繁無難也。 第三卷求推交食,依人目所見儀器所測之時刻及 所食分數之原,必應改「實時」為視時,而此地此時見 食,彼地則異時見食也。故可隨地推交食之有無,又 可上推往古,下驗將來萬年,悉如指掌。若食分之多 寡,既原於日月地景之各視半徑,則定視徑分秒之 數。逆計太陰居最高或最卑,本視徑差地景,即因太 陽居高居卑不同其照地生景之差,以得各實差,然 後食分可得而定矣。

第四卷詳食限食甚前後時及《繪食圖》以解各食向 位,論限日與月不同。蓋雖同以所行各道經度距交 幾何,為有食之始,然而月食則太陰與地景遇,因而 兩周相切,即以兩視半徑並較白道距黃道度,推交 周度以定食限。日食則太陽與太陰遇,雖亦兩周相 切,而有視差,必先加入視差,而後得距度,定其食限 也。惟其食限各異,故推太陰「越五月能再食,越七月 不再食」,而太陽越五月、七月皆能再食。

至於食分,則以距度求之,蓋兩周之心,相距之度也。 在月食則為太陰心實,距地景之心愈近,食分愈多。 在日食則為日月兩心,以視度相距,其近遠不依實 度,而依目視之所及為準。此即月食分天下皆同,而 日食分隨人目「東西南北各異」之原也。

「食分以緯度而定;食甚前後時刻,則並以經緯而定。」 蓋太陰本時距度多寡不同,即入景淺深亦不同,淺 則歷時少,深則歷時多,此蓋從緯定也。若就《經》論,太 陰之自行時疾時遲,緯與視徑雖同,而自行每食不 同,即所得時刻亦必不同。但太陰入景之弧與出景 之弧略等,故依其行弧,推食甚前之時倍之,隨得食 甚後至復圓之時,乃日食時刻,則又以視差有異焉。 《交食圖》列方位,方位者,日月失光之面所向之方也。 法先考本食,是陰曆或陽曆,更考黃道,是斜交地平 與否。蓋黃道斜交,日月亦依以斜行,食時方向必異, 不可不審也。故繪圖以一直線過日月二心,審其與 地面相遇之勢,乃定日食方位,過日「景二心,審其與 地平相遇之勢,乃定月食方位。」舊法徒以《陰陽二曆》 求之,疏矣,驗時安得合乎?

第五卷「詳日月視差及日食掩地面幾何」凡推步日 食,要以「人目為主,目見之會,非實會而視會也。此差 雖由地半徑生。」以人目在地面不在地心故更為「人目差,分別有 三等:一,高卑差,以天頂為限;一,南北差,以黃道為限, 此限能變諸曜緯度;一,東西差,以黃道九十度為限, 其左右能變經度及時刻,測此三差,悉用三角形。」因 設地半徑為一邊,日月各距地高為一邊,各距地面 之遠為一邊,測之乃得高弧,或正或斜,交於黃道,以 四方分視差。然東西南北二差,又時有變務,彼此相 較,展轉推求可也。

論「日食之掩地面,必係全食,或係應不見光之地面, 又或本日太陽適在最卑,而其視徑大似太陰之視 徑,若此,則雖二曜之心合,而周邊大小微異,乃見金 環焉。」又總論見食之地,其廣幾何,且見食進退一分, 應地面幾何?由是以推各國各省能見食與否,並食 分多寡等義