之法,其要有二:其一儀形必依權衡之理分之,即軸之周圍輕重相等,而取其運動之便,蓋儀形之中心與其重心不同故也。其一須立軸之中線與儀之立邊平行,以免致離於天頂之垂線也。又於儀之縱橫兩邊相遇之處,即過天頂,圈之中心,定有圓柱為表,加窺衡,而衡之下端,依法另加長方孔之表,與上表相等相對,其指線於弧之正面,指定所測之度分,任意上下進退之,而於弧之背面用螺柱以定之。若用象限全圈之徑以為衡,而衡之兩端立圓柱以為表,則可得負圈之角而倍加度數之細分也。蓋此二度相併歸於一度,而此一度共有一千二百分焉。《立運儀》左右有兩立柱,其兩柱之上有《雲弧,下橫一梁,相連如樓閣然。又立軸之兩邊有雙龍扶拱,以為座架。立軸之兩端,加以鋼樞,上下各以鋼孔受之。其在下橫梁中有銅環以承立軸。樞環之徑,四倍於樞之徑。環之三面各加螺柱,橫入於環,出入展縮,以進退樞,令就合於垂線也。座架四傍,上下無所隔礙,窺測者從立軸以左右旋轉,甚便周視也。
紀限儀
紀限儀之全圈,則六分之一,即六十度之弧也,亦名「距度儀。」《全儀》分之為二,一幹一弧。〈見「第五圖。」 〉幹之長與弧之半徑及弧之通弦皆相等,即皆六尺也。弧之寬二寸五分,此儀之難製在於其幹,何也?蓋用儀之時,其幹大概離天頂而左右上下移動之衡斜向地平,故幹愈長愈軟,而愈垂下,不合於儀之半徑。欲令堅固,恐銅加厚而儀不便於用,故用三稜角形之法,而左右上下之既堅固,亦復輕巧,則用以合天,使之彼此不相反也。幹之上端有小衡,以十字直角相交於弧之半徑線,下端入弧之中。夫幹及弧并《小衡》之上面皆在一平面,令儀合於本圈而便測驗故耳。又左右皆有細雲,彼此相連,蓋藉之以堅固全儀者也。若夫儀之中心及小衡左右之兩端各定有一表,皆圓柱。左右各表之徑線相距,中幹之徑線,本弧之十度,弧之度分從其中線起算,左右各三十度,每度則六十分,每一分又十細分,則一度共六百細分,而每細分則當六秒,蓋與《象限儀》之分法無殊也。其弧上有游表者三,其表之平面有三,界線長孔,孔內之方形依本法與圓柱表相等焉。夫儀之全體則用權衡之理以定之,蓋取其重心以為儀心耳。至如儀之座架有兩端,一為三運之樞軸,一為承儀之臺。夫三運之器加於儀之背面,定於儀之重心,以左之右之,高之下之,平之側之,無所施而不可,故又名《百游之紀限儀》焉。其三運之器所以成之者有三:其一圓管內有圓軸橫入之,便於高下運用也;其一半周圈,其中心與橫軸之中心正同,便於平側運用也。其一立軸,則便於左右運用焉。以圓管定於儀之重心,而半周圈與橫軸之心并立,軸之上端有小圓柱,以為平側運之軸。而立軸所容半周之處,則內有山口以容之,外有螺柱以定之。此輕小之儀之最便法也。今制《紀限》儀甚重大,側運之則必下垂,而「螺柱恐難以定。故於半周弧外規加齒,而立軸旁則加小輪,其徑約二寸,其圓面稜齒與半周齒相入。又小輪同軸而另加全輪,其全徑與小輪之徑,如五與一,與半周之徑,如一與二,蓋依舉重學」之理轉運之,而輕五倍也。用此法,則全儀不勞力而可側運矣。定之則於立軸下端深入臺上端之圓孔,因儀左右旋轉,而窺測之目可無所不至矣。臺約高四尺,其座約寬三尺,從下至上有游龍蜿蜒以繞之,而《紀限》儀之制於斯全焉。
天體儀
諸儀之中,其最象乎渾天而為用甚大者,莫《天體儀》若也。蓋《天體儀》乃渾天之全象,而其為用則又諸儀之用之所統宗也。然諸儀中最為難制者,亦莫若《天體儀》為夫畢肖乎天形,且便於用之為難也。其難於畢肖天形者,難以取圓故也。其難便於用者,難於周圍均輕而無偏垂故也。其取圓則以子午圈或地平圈,為準先應分子午圈,劃為四象限。〈見「第六圖。」 〉次定兩相對之界,以為南北二極。每一象限則分為九十度,而兩極各為九十度之界。子午圈則以兩面「度」及字彼此準對。每一度以對角線之比例,而另以六十細分。又每一分更細而四分之,而每四分之一則當十五秒也,則以游表識之焉。又子午立圈,以向東之規面為正面,而儀之中心乃正對。於斯。其南北兩極各作圓半孔,以受儀之半軸。其