Page:Gujin Tushu Jicheng, Volume 033 (1700-1725).djvu/9

此页尚未校对

夏至相應之時,以直線連之,得左右皆同,皆與斜球 斜交赤道。其晝長短線,總繇赤道緯度任,用疏或密, 故其理不異。節氣線製法亦同。若諸方相距東西線, 皆子午圈所為,與時圈同,必以過兩極圈取準,與製 地平晷線同法。以上晷面所得諸線,依本容因之,有 異必從其儀。上所得圈,視儀心至面止,俱依前法。如 試於立晷,即地平與赤道為平行,故地平緯似節氣 線形。《地平經》皆上下平行,遠疏而近,午時則密,全倣 赤極晷線。十二舍線皆出地平,與子午線相交,太陽 出沒距時線,如前地平面同。七政線亦出地平,交子 午線之點,晝夜長短,亦如節氣線。諸方相距東西線, 亦與正時線同。製法各隨本類。全載日晷本款,此不 復詳。

地球用法

地球以圓形倣地之本體,又以旋動反其性情者,總 欲因各處向頂之自然也。蓋地居萬物之中心,隨處 向天,即如圓圈中心出直線,無一線不正向其界者。 然乃製之為球,反若偏居。在地面故距天此近彼遠。俱以子午 圈求天頂故必宜活動,以隨處能移至頂,與天相近,而從 之向頂可也。故安球必先取平以合於地平,使子午 圈南北得正,而因以諸方向得本所焉。後令球前後 起,或左右轉,務以本處至中頂,乃得向天之勢。有以 二處相提而論,或經緯皆異者,或經同而緯異者,或 求二處相距之里及所向之位,緯同而經異者,總於 本球得明矣。先論其經緯皆異者,法任令一處居頂, 而從此下高弧至地平,使之南北游移,以正交其彼 處為度。乃識交度與頂之中弧化為里,則得二處直 相距之里數。又復識本高弧交地平度,因以得彼處 較前處所居之方位。假如順天府北極出地四十度, 令球極起四十度,隨轉球,使順天府至子午圈,即以 之居頂,乃依之安高弧,過雲南,則自頂至交點約二 十二度,即算得六千里。依二百七十里一度筭而高弧至地平, 則從正南去西五十二度,即西南第四向位也。各向詳下 文又使高弧過星宿海,得自頂至本海之中弧為一 十八度,化得四千八百餘里。而高弧至地平,乃距正 南六十二度,則因本海較順天府在西南第三向位 矣。若經同而緯異,即先移其處,同居子午圈下,以本 圈上度識二處各距赤道若干度,以之相減,乃得其 相距度,因以化為里。如順天府與南昌府,約在同經, 試於子午圈上,得南昌北距赤道二十八度。《順天》距 四十度,相差十二度,化得三千六百餘里。設一處在 赤道內,一處在赤道外,各以所得數相加,即其相距 度,乃因以化為里。若緯同而經異,即先各以其處移 至子午圈下,從《鶯島》圈線起,至子午圈下止。赤道上 算各經度,以之相減,即得二處經度差。但距赤道內 外遠近者,依赤道平行小圈,似不能如前法求里數。 蓋小圈所應一度之里,較本赤道度相應者不等,因 而度小里數亦應少。今惟於球上用高弧,乃有一簡 即得者,何也?以一處居頂,安高弧,使從他處過,則止 視高弧上交點與頂之間弧,即其相距度,因復算得 里數如前。假如大西之極西地,得北極高四十度,與 順天府同緯,因屬距赤道四十度之平行小圈。論其 本經度,應差一百三十度;依度求里,亦應距三萬五 千一百有奇。今止以高弧為主,則二處直相距約九 十度,算得為二萬四千三百里,而相應之向位,且亦 不在正東西焉。使以順天府居頂極西,地必北去正 西五十餘度,入從西第五方位,使以極西地居頂順 天府,亦必北去正東五十餘度,以入東第五方位。凡 此皆地為圓形,而更得斜容故也。

任以一處依經緯度安於球。

地球以東西為經,南北為緯,與天球不異。但求緯甚 易。惟一測其極出地高,即得其頂距赤道度,而緯定 矣。若經度必以其所先定處為界,依之東去加度至 某處止,乃較前所得距度,是其本經度也。如測緯依 測北極諸法,即以所得極高度於子午圈上,從赤道 往極數至本度,隨識之球上,乃得緯圈應過之界焉。 《測經》一法,以月食為準,因先知某處月食初虧食甚 等時分秒,今復得他處所測分秒,以之相較,必得二 處相距之時,乃化為度。蓋前處居西,所得差度加前 經度,前處居東,所得差度減於前經度,乃因得本處 之經度。次於本球赤道上,從前處查得其度,而於本 度左或右,即以距弧所至之處,復移至子午圈,則本 圈交前緯圈之點,即某處在地面方位也。第月食不 常遇,更有一法,止須測太陰在黃道度,并識其臨測 之時刻,而復考他處所載太陰細行。務求極準者「應於何 時。至所測度分,則較二時所距化為度。」如前加減,乃 復得二處距經度。然太陰每多視差,必候其在冬夏 至之時,於正過子午線上測之,乃可免視差也。又或 以其角依上下垂線取準,蓋兩角居一線上,則月體 正在黃平象限,全無時差。否則上角偏東即未及,上 角偏西即已過也。因之求時,與度法同前。又一法,可