欽定古今圖書集成/曆象彙編/曆法典/第126卷

曆象彙編 曆法典 第一百二十五卷 欽定古今圖書集成
曆象彙編 第一百二十六卷
曆象彙編 曆法典 第一百二十七卷


欽定古今圖書集成曆象彙編曆法典

 第一百二十六卷目錄

 算法部彙考十八

  新法曆書比例規解

曆法典第一百二十六卷

算法部彙考十八编辑

《新法曆書》
编辑

比例規解遠西羅雅谷著编辑

序目

天文曆法等學,舍度與數,則授受不能措其辭。故量 法、算法、恆相發焉。其法種種,不襲而器。因之各國之 法與器,大同小異。如算法之或以書、或以盤珠,吾西 國猶以為未盡其妙也。近世設立籌法,似更超越千 古。至幾何家用法,則籌有所不盡者,而量該之不能 不藉以為用。今繇《幾何》六卷六題,推顯比例規尺一 器,其用至廣,其法至妙,前諸法器,不能及之。因度用 數開闔。其尺以規搘度得算最捷,或加減,或乘除,或 三率,或開方之面與體,此尺悉能括之。又函表度、倒 景、直景、日晷、句股、弦算、五金輕重、諸法及百種技藝, 無不賴之。功倍用捷,為造瑪得瑪,第嘉最近之津梁 也。昔在上海,曾為徐宗伯造其尺,而未暇譯書。今奉 旨修曆,兼用敝庠之法。思此小器,為用既廣,曷敢祕 而不傳。第中西文字,絕不相同,倘因艱澀而輟譯,是 坐令此器不得其用,不甚可惜哉。因草創成書,請教 宗伯。此器之倘為用于世也,則潤色之,增補之,定有 其時而谷之不文,或見亮於天下後世也矣。

論度數者其綱領,有二:一曰量法,一曰算法。所量所 算者,其節目有四焉。曰點,曰線,曰面,曰體。總命之曰: 《幾何之學》。而其法不出於比例,蓋比例法又不出於 句股。第句股為正方角,而別有等角、斜角。句股不足 盡其理。故總名之曰:三角形,此規名比例者,用比例 法也。器不越咫尺,而量法、算法,若線、若面、若體、若弧、 矢方圓諸法。凡度數所須,該括欲盡,斯亦奇矣。所分 諸線,篇中稱引之說,特其指要,各有本法。本論未及 詳焉。若所從出,與其致用,則三角形之比例而已。按 《幾何原本》六卷四題云:凡等角三角形,其在等角旁 之各兩腰線,相與為比例必等。而對等角之邊,為相 似之邊。六題云:兩三角形之一角等,而對等角旁之 各兩邊比例等,即兩形為等角形。而對各相似邊之 角各等。作者因此二題創為此器。今依左圖解之,如

圖

甲乙丙與丁乙戊大小兩三角形,同用乙角即為等角,則甲乙與乙丙之比例。若丁乙與乙戊而對等角之邊,如甲丙與丁戊為相似之邊也,又顯兩形為等角形,而對各相似邊之角各等也。今此規之樞心,即乙角兩股、即乙甲乙丙兩腰,甲丙為底,即與乙丁戊為等角形,而各相當之各角各邊其比例悉等矣。任張翕之,但取大

圖

小兩腰,其兩底必相似也,或取兩底,其兩腰必相似也,或取此腰,此底其與彼腰彼底必相似也,以數明之,如甲乙大腰一百,乙丁小腰六十,而設甲丙大底八十,以求小底丁戊,即定尺用規器量取丁戊,為度向平分線。取數必四十八,不煩乘除矣。又如平方積一萬,其根一百,求作別方為大方四之三,即以一百為腰,分面線之,

四點為大,底次以三點為小,腰取小底為度向平分 線,得八十六半強為小方根。自之約得七千五百為 小方,積不煩開平方矣。又如立方積八千,其根二十, 求作大方倍元方,即以二十為小底,分體線之一點 為小腰,次以二點為大腰,取大底為度於平分線。得 二十五半自之,再自之約得一萬六千為大方積,不 煩開立方矣。篇中所言某為腰,某為底,設某數得某 數者,皆此類也。規凡二面,面有五線,共十線,其目如 左。

第一平分線;

第二分面線;

第三更面線;

第四分體線;

第五更體線;

第六分弦線;

第七節氣線;

第八時刻線;

第九表心線;第十五金線。

右比例十類之外,依幾何原本其法甚多,因一器難 容多線,故止設十線,其不為恆用者。姑置之稍廣焉。 更具四法如左,

一、平面形之邊與其積;

二、有形五體之邊與其積與其面;

三、有法五體與球或內或外兩相容;

四、隨地造日晷求其節氣。

比例規造法一名度數尺,其式有二。

第一式

第一式

一以簿銅板或厚紙,作兩長股,如圖,任長一尺,上下 廣如長八之一,兩股等長、等廣、股首上角為樞,以樞 心為心,從心出各直線,以尺大小定線數,今折中作 五線,兩股之面共十線,可用十種比例之法。線行相 距之地取足書字而止。尺首半規餘地以固樞也,用 時張翕游移。

第二式

第二式

一以銅或堅木作兩股,如圖:厚一分以上,長任意,股 上兩用之際以為心。規餘地以安樞,其一規面與尺 面平,而空其中,其一剡規而入於彼尺之空,令密無 罅也,樞欲其無偏也,兩尺並欲其無罅也,樞心為心, 與兩尺之合線,欲其中繩也。用則張翕游移之,張盡 令兩首相就成一直線。可作長尺,或以兩半直角相 就成一直角,可作矩尺。

比例矩之類別有二種。一為四銳定心規;一為四銳 百游規,不解之其造法,頗難為用未廣,姑置之。

比例各線總圖四

比例各線總圖四

比例各線總圖二

比例各線總圖二

比例各線總圖三

比例各線總圖三

{{{2}}}

{{{2}}}

第一平分線

分法

此線平分為一百或二百,乃至一千量尺之大小也。 分法如取一百先平分之為二,又平分為四,又各五 分之為二十,自此以上不容分矣,則用更分法,以元 分四復五分之,或以元分六復五分之,如左圖:甲乙 線分丙丁戊為元分之四,今更五分之,得己庚辛壬。 元分與次分之較為壬丙為戊己,皆甲乙二十分之 一,為元分五之一。

圖

每數至十、至百,各書字識之。

論曰:甲乙四與甲丙一,若甲己四與甲壬一更之甲乙四與甲己四,若甲丙一與甲壬一,甲己為甲乙五之四,即甲壬為甲丙五之四,壬丙為甲丙五之一,又甲丁為十,甲辛為八,辛丁為甲丁十之二,或丙丁五之二,戊庚為丁戊五之三,又壬丙為甲丙五之一,必為甲壬四之一。幾何五卷

用法一:

凡設一直線任欲作幾分,假如四分。即以設線為度 數,兩尺之各一百以為腰,張尺以就度,令設線度為 兩腰之底。置尺數兩尺之各二十五以為腰。斂規取 二十五,兩點間之度以為底。向線上簡得若干數,即 所求分數。 凡言線者皆直線,依幾何原本,大小兩 三角形之比例,則二十五與得線。若一百與設線也, 更之二十五與一百,得線與設線皆若一與四也。 若求極微分,如一百之一,如上以一百為腰,設線為 底,置尺次以九十九為腰,取底比設線,其較為百之 一。 若欲設線內取零數,如七之三,即以七十為腰。 設線為底,置尺次以三十為腰,斂規取底,即設線七 之三。置尺者置不復動下倣此

用法二:

凡有線求幾倍之,以十為腰,設線為底置尺。如求七 倍以七十為腰,取底即元線之七倍。若求十四倍,則 倍得線,或先取十倍,更取四倍并之。

用法三:

有兩直線欲定其比例,以大線為尺末之數尺百即百千即 千置尺,斂規取小線度於尺上,進退就其等數,如大 線為一百,小線為三十七,即兩線之比例。若一百與 三十七可約者約之。

約法以兩大數約為兩小數,其比例不異如一百與三十約為十與三。

用法四:

乘法與倍法相通。乘者求設數之幾倍也如以七乘十三,於腰 線取十三為度,七倍之。即所求數也。

用法五:

設兩線或兩數。

凡言數者,腰上取其分,或以數變為線,或以線變為數。

欲求一直線而與元設兩線為連比例。 若設大求 小,則以大設為兩腰,中設為底,次以中設為兩腰,得 小底,即所求。如甲乙、甲丙尺之兩腰,所設兩數為三 十,為十八,欲求其小,比例從心向兩腰取三十。如甲 辛、甲己識之,斂規取十八為度,以為底,如辛己次從

圖

心取十八,如甲丁、甲戊。即丁戊為連比例之小率,得 十一有奇。 若設小求大,則反之,以中設為兩腰,小 設為底,置尺以中設為度,進求其等數以為底。從底 向心得數,即所求。如甲丁、甲戊為兩腰,丁戊為底,次 以甲丁為度。引之至辛、至己而等,從辛從己向心得 三十。即大率論。見幾何六卷十一題

凡言等數者皆兩腰,上縱心取兩數等。下同

用法六:

凡有四率連比例,既有三率而求第四,或以前求後, 則丁戊為第一率,辛己、甲丁、甲戊為第二。又為第三 而得辛甲,為第四。若以後求前,則甲辛、甲己為第一, 辛己、甲戊、甲丁為第二。又為第三而得丁戊為第四。

甲辛與辛己若甲丁與丁戊,故也。

圖

用法七:

有斷比例之三率求第四,如一星行九日得一十一度,今行二十五度,日幾何。即用三率法以元得一十一度為兩腰,元行九日為底,置尺以二十

五度為兩腰,取大底腰上數之得二十日十一之五為所

求日。

此正三率法九章中名異乘同除也。

圖

用法八:

句股形有二邊,而求第三法於一尺。取三十為內,句一尺,取四十為內股,更取五十為底,以為內弦,即腰間角為直角置尺,若求弦,則以各相當之句股進退取數,各作識於所得點。兩

點相望,得外弦線。以弦向尺,上取數為外弦數。

言內外者以先定之,句股成式為內,甲乙丙是以所設所得之。他句股形為外,甲戊己是。

若求句於內股,上取外股作識,以設弦為度,從識向 句尺。取外弦得點,作識,從次識向心數之。得句求股 亦如之。

下有開方術為句股本法可用。

用法九:

若雜角形有一角及各傍兩腰,求餘邊。先以弦線法

圖

依設角,作尺之腰,間角次用前法取之。見下二十一用四法

用法十:

有小圖欲更畫大幾倍之圖,則尺上取元圖之各線加幾倍,如前作之。

用法十一:

此線上宜定兩數其比例,若徑與周為七、與二十二、 或七十一與二百二十三,即二十八數上書徑八十 六上書周。 有圈求周徑法,以元周為腰,設周為底,

圖

次于元兩徑。取小底得所求徑。 反之以徑求周徑為腰如前。

用法十二:

此線上定兩數,求為理分中末線之比例。則七十二與四十二又三之一,不盡為大分其小,分為二十四又三之二弱。 有一直線

欲分中末分,則以設線為度,依前數取之。幾何六卷三十題

第二分面線,

今為一百不平分,分法有二:一以算,一以量。

圖

以算分:

算法者以樞心為心,任定一度為甲乙十平分之,自之得積一百。 今求加倍,則倍元積一百為二百。其方根為十四又十四之九。即於甲乙十分線加四分半強,而得甲丙為倍面之

圖

邊。求三倍,則開三百之根,得十七有半為甲丁,求五六七倍以上者,邊法同。用方根表甚簡易

以量分:

任取甲乙度為直角方形之一邊,求倍,則於甲乙引至丁,截乙丁倍於甲乙,次平分,甲丁於戊戊心。甲界作半圈,從乙作乙己垂線,截圈於己。即己乙線為二百容形之一邊。六卷二十六增

三倍則乙丁三倍於甲乙,四倍以上法同於尺上,從 心取甲乙,又從心取乙己。等線成分面線。

試法:

元線為一正方直角方形省曰正方之邊,倍之。得四倍容方之 邊。否則不合。三倍之得九倍容方之邊,四倍得十六, 五倍二十五,又取三倍之邊,倍之,得十二,再加倍,得 二十七倍之邊。再加倍,得四十八倍之邊。再加倍,得 七十五倍之邊。若五倍容形之邊,倍之得二十倍容 形之邊。再加倍,得四十五倍容形之邊。再加倍,得八

圖

十倍容形之邊。本邊之論見幾何六卷十三

用法一:

有同類之幾形。

方圓三邊,多邊等形容與容之比例。若邊與邊其理具幾何諸題。

欲並而成一同類之形,其容與元幾形并之容等。如

圖

正方大小四形,求作一大方其容與四形并等。第一形之容為二,二形之容為三,三形之容為四有半,四形之容為六又四之三。其法從心至第二點為兩腰,以第一小形之邊為底置尺,次并四形之容得十六又四之一。以為兩腰,取其

圖

底為大形邊,其容與四形之容并等。 若無容積之比例,但設邊如甲乙丙丁,四方形其法從心至尺之第一點為兩腰,小形甲邊為底置尺,次以乙形邊為度,進退取等數得第二點,外又四分之三,即書二又四之三,次丙形邊為度得

三又五之一,丁形邊得四又六之五,并諸數及甲形 一得十又二十之十九,向元定尺上進退,取等數為 底,即所設四形同類等容之一大形邊。此加形之法

圖

用法二:

設一形,求作他形大於元形幾倍法。曰元形邊為底,從心至第一點為腰,引至所求倍數點為大腰。取大底即大形之邊。此乘形之法

用法三:

若於元形求幾分之幾,以元形邊為底,命分數為腰, 退至所求數為腰,取小底即得。 如正方一形求別。 作一正方,其容為元形四之三,以大形邊為底,第四 點為腰。即命分數次以第三點為腰。即得分數得小底即小形 邊。

此除形之法。若設一形之積大,而求其若干倍小,而求其若干分,則以原積當單數,用第一線求之。

用法四:

有同類兩形,求其較,或求其多寡,或求其比例若干。 法曰:小形邊為底,第一點為腰置尺,以大形之邊為 度。進退就兩等數以為腰,得兩形比例之數。次於得 數減一所餘為同類,他形之一邊,此他形為兩元形 之較。 如前圖,小形邊為一,大形邊為六,其比例為 一與六,則從一至六為較形邊。此減形之法

用法五:

有一形,求作同類之他形。但云兩形之容積,若所設 之比例。法曰:設形邊為底,比例之相當率為腰,次他 率為腰,取其底為他形之邊。

用法六:

有兩數,求其中比例之數。法曰:先以大數變為線,變 線者於分度線上。取其分與數等為度也,以為底。以

圖

本線上之本數為腰。置尺次於小數上,取其底線變為數,變數者於分度線上查,得若干分也,此數為兩元數中比例之數。 如前圖,二與八為兩元數,先變八為線以為底,以本線之第八點為腰,置尺次於第二點上,取

其底線變為四數,則二與四若四與八也。 若設兩 線不知其分,先於分度數線上查幾分法,如前。

用法七

圖

有長方,求作正方,其積與元形等法。曰:長方兩邊變兩數,求其中比例之數變作線。即正方之一邊與元形等積。

用法八:

有數求其方根,設數或大或小。若大如一千三百二 十五。先於度線上取十分為度以為底,以本線一點 為腰。即一正方之邊其積一百次,求一百與設數之 比例。得十三倍又四之一。以本線十三點強為腰,取 其底於度線上,查分得三十五強為設數之根。

第三更面線。

分法,

如有正方形,欲作圓形與元形之積等。置公類之容 積四三二九六四以開方,得六五八正方邊也。以開 三邊形之根,得一千為三邊等形之一邊。開五邊之

圖

根,得五○二,六邊形之根為四○八,七邊形之根為三四五,八邊形之根為二九九,九邊形之根為二六○,十邊形之根為二三七,十一邊形之根為二一四,十二邊形之根為一九七。圓形之徑為七四二。以本線為千平分而取各類之

數。從心至末取各數加本類之號。

言平形者,有法之形,各邊各角俱等。

用法一:

有異類之形欲相併,先以本線各形之邊為度,以為 底。以本類之號為腰,置尺取正方號之底線別書之 末。以各正方之邊於分面線上,取數合之而得總邊 也。

假如甲乙丙三異類形欲相併。先以三邊號為腰,甲 一邊為底,置尺取正方號,四點內之底向分面線上

圖

用十數為腰。正方底為底,於甲形內作方底線書十次,五邊號為腰,乙一邊為底,如前。取正方底向分面線得二十一半。即於乙形內作方底線,書之次圓號為腰徑,為底,如前。得十六弱併,得四十七半弱。 若欲相減,則先通類。如前法

次於分面線上相減。同上圖

用法二:

有一類之形,求變為他類之形。同積以元形邊為度 以為底,從心至本號點為腰,置尺次以所求變形之 號為腰得底,即變形邊。

用法三:

凡設數求開各類之根,先於分面線求正方之根次, 以方根度為底,本線正方號為腰,置尺,則所求形之 號之底線,即元數某類之根。

有法之平形,其邊可名為根,與方根相似。

用法四:

若異類形,欲得其比例與其較。則先變成正方,依分 面線求之。

第四分體線。

線不平分,分法有二:一以算,一以量。

以算分:

從尺心任定一度為甲乙,十平分自之,又自之得積 一千。即定其線為一千,即體之根。今求加一倍積體

圖

之根。倍元積得二千,開立方根得十二又三之一。即於甲乙加二又三之一為甲丙。乃倍體之邊,求三倍開三千數之立方根,以上同。

又捷法取甲乙元體之邊,四分之一加於甲乙元邊,得甲丙,即倍體邊又取甲

丙七分之一,加於甲丙得甲丁。乃三倍體之邊,取甲 丁十分之一加於甲丁,得甲戊,乃三倍體之邊。再分 再加如圖。

圖

試置元體之邊二十八四之一,得七,以加之,得三十。 五法曰:兩根之實數,即用再自之數為一,與二不遠。 蓋二十八之立實為二一九五二,倍之為四三九○ 四。比於三十五倍體邊之實四二八七五,其差纔○ 一○二九,約之為一千四百五十二分之一,不足為 差。若用三十六之四六六五六,其差為遠。 又加倍 體七之一,得再倍體之邊三十五又七之一,七之一 者五也。以加之得四十。其實為六四○○○。元積再 倍之,數為六五八五六。較差纔○一八五六,或三十 五之一可不入算也,若用四十一根之實六八九二 一,其差為遠。

又試倍邊上之體為體之八倍。即依圖計零數至第 八位,為五之四,八之七,十一之十,十四之十三,十七 之十六,二十之十九,二十三之二十二。用合分法合 之得一二○四二八○之六○八六○八。約之為一 ○七五○之五四三四,與二之一不遠。則法亦不遠, 右兩則皆用開立方之法,不盡數難為定法。

以量分:

先如圖,求四率連比例線之第二,蓋元體之邊與倍 體之邊為三,加之比例也。今求第二。幾何法曰:第二 線上之體與第一線上之體,若四率連比例線之第 四與第一。假如丙乙元體之邊,求倍體之邊。則倍丙

乙,得甲丁。以甲丁乙丙作壬巳辛庚矩形,於壬角之兩腰引長之。以形心為心,如戊作圈,分截引長線於子、於午漸試之。必令子午直線切矩形之辛角乃止。即乙丙即辛庚午庚子己甲丁即壬庚為四率連比例線。用第二率午庚為次體之

一邊,其體倍大於元體。詳雙中率論 若甲丁為乙丙之 三倍、四倍。即午庚邊上之體大於元體,亦三、四倍以 上倣此。 用前法則元體之邊倍之,得八倍體之邊。 若三之得二十七倍體之邊,四之得六十四倍體之 邊,五之得一百二十五倍體之邊。

又取二倍體邊倍之,得十六,再倍得一二八。倍體之 邊,本線上量體任用其邊,其根、其面、其對角線、其軸 皆可。

用法一

設一體,求作同類體大於元體幾倍法,以元體邊為

底,從心至第一點為腰,置尺次以所求倍數。 為腰 得大底,即所求大體邊。 若設零數如元體,設三求 作七,以三點為初腰,七點為次腰,如上法。此乘體之法

用法二:

有體求作小體,得元體之幾分。如四分之一,四分之 三等。法以元體之邊為底,命分數之點為腰,置尺,退 至得分數為小腰,得小底是所求分體邊。此分體之法

用法三:

有兩體求其比例。以小體邊為底,第一點為腰,置尺 次以大體邊為底。就等數得比例之數也,不盡則引 小體邊於二點以下。以大邊就等數兩,得數乃上可, 得比例之全數而省零數。

用法四:

有幾同類之體,求并作一總體。 若有各體之比例, 則以比例之數合為總數。以小體邊為底,一點以上 為腰,置尺於總數點內,得大底,即總體邊。 若不知 其比例,先求之次,用前法。此加體之法

圖

如圖:甲乙丙三立方體,求併作一大立方體。其甲根 一,乙三又四之三,丙六併。得十又四之三,以甲邊為 底,本線一點以上為腰,置尺向外,求十又四之三為 腰,取底為度,即所求總體之根。

用法五:

大內減小所存,求成一同類之體。 先求其比例,次 以小體邊為底,比例之小率點以上為腰。置尺次以 比例。兩率較數點上為腰。得較底,即較體之邊。此減體之 法

用法六:

有同質同類之兩體,得一體之重知他體之重。蓋重 與重若容與容。先求兩體之比例,次用三率法。某容 得某重若干。求某容得某重若干。

同質者、金鉛銀銅等同體者,方圓長立等。

用法七:

有積數欲開立方之根。  置積與一千數,求其比例。 次於平分線上取十分為底,本線一點以上為腰,置 尺次比例之大率以上為腰,得大底於平分線上,取 其分為所設數之立方根。如設四萬則四萬與一千 之比例為四十與一,如法於四十點內,得大底線變 為分得三十四強。 若所設積小不及千,則以一分 為底,一點或半點或四之一等數為腰,置尺設數內。 求底而定其分,若用半點,用所設數之一半,用四之 一,亦用設數四之一。蓋算法通變或倍、或分、不變比 例之理。

用法八:

有兩線,求其雙中率。線數同理如三為第一率,二十四為 第四率,求其比例之中兩率。 法求兩率之約數,得 一與八以小線為底,一點以上為腰,置尺次八點以 上為腰,取大底即第二率有第二,第四依平分線求 第三。

第五變體線

變體者如有一球體,求別作立方其容與之等。

分法

置公積百萬,依算法開各類之根,則立方之根為一 百四,等面體之根為二○四八,等面體之根為一二

圖

八半十二,等面體之根為五十二十,等面體之根為七六。 圓球之徑為一二六。 因諸體中獨四等面體之邊最大,故本線用二百○四分平分之,從心數各類之根至本數加字。

開根法見測量全義六卷

用法一:

有異類之體,求相加以各體之邊為度以為底。本線 本類之點以上為腰,置尺次從立方點內,取底別書 之各書訖,依分體線法合之。

用法二:

有異類之幾體,求其容之比例。先以各體變而求同 容之立方邊、次於分體線,求其比例。乃所設體之比 例。若知一體之容數,因三率法求他體之容數。

第六分弦線亦曰分圈線

圖

分法有二:

一法、

別作象限圈分,令半徑與本線等長,分弧為九十度。各作識從一角向各識,取度移入尺線,從尺心起度各依所取度作識加字。若尺身大加半,度之點可作一百八十○度,若身小

圖

可六十度、或九十度止。

又法

用正弦數表取度分數,半之。求其正弦倍之,本線上從心數之識之。

如求三十度弦,即其半十五度之正弦為二五九,倍之得千分之五一九。為三十度之弦從心

識之。

用法一:

有圈徑,設若干之弧,求其弦以半徑為底,六十度為 腰,置尺次以設度為腰,取底,即其弦移試元圈上合 其弧。 反之有定度之弦,求元圈徑,以設弧之弦為 底,設度為腰,置尺次取六十度為腰,取底。即圈之半 徑。

用法二:

有全圈,求作若干分法。以半徑為底,六十度其弦即半徑也 為腰,置尺命分數為法,全圈為實,而一得數為腰,取 底試元圈上合所求分。此分圈之法 約法本線上先定 各分之點。如百二十為三之一,九十為四之一,七十 二為五之一,六十為六之一,五十一又七之三為七 之一,四十五為八之一,四十為九之一,三十六為十 之一,三十二又十一之八為十一之一,三十為十二 之一各加字。

用法三:

凡作有法之平形,先作圈以半徑為底,六十度為腰, 置尺次本形之號為腰,取底,移圈上得分。

用法四:

有直線角,求其度,以角為心任作圈,兩腰間之弧度 即其對角之度。有半徑有弧求度如左

用法五:

有半徑,設弧不知其度數,法以半徑為底,六十度為 腰,置尺次以弧為度,就等數作底,其等數即弧度。反 之設角度不知,其徑及弧求作圖。其法先作直線,一 界為心任作圈。分以截線為底,六十度之弦線為腰,

圖

置尺次於本線,取設度之弦線為腰,得底以為度,從截圈點取圈分。即設度之弧,再作線到心,即半徑成直線角如所求。

因此有兩法可解。三角形省布數詳測量全義首卷

第七節氣線。一名正弦線

分法:

全數為一百平分,尺大可作一千用,正弦表從心數

圖

各度之數。每十度加字。如三十度之正弦五十,則五十數傍書三十二度之正弦五,則五數傍書三。

簡法

第一平分線可當此線為各有百平分,則一線兩傍, 一書分數字,一書度數字。

用法一:

半徑內有設弧求其正弦。以半徑為底,百為腰,置尺 次以設度為腰,取底即其正弦。

用法二:

凡造簡平儀、平渾日晷等器。用此線甚簡易,如簡平 儀之下盤,周天圈其赤道線左右,求作各節氣線。先 定赤道線為春秋分,次於弧上取赤道左右各二十 三度半之弧,兩弧相向作弦。以其半弦為底,本線百 數為腰,置尺次數各節氣離春秋分兩節之數。尋本 線之相等數為腰,取底為度,移赤道線,左右兩旁作 直線與相對之節氣相連,為各節氣線。

或於赤道線上及二至線上定時刻線之相距若干亦可。

如欲定立春、立冬、立夏、立秋、

因四節離赤道之度等。故為公度。

法曰:立春至春分四十五度,則取本線四十五度內 之底線,移於儀上春分線左右。 若欲定小暑、小寒 之線離秋分、春分各七十五度,則取七十五度內之 底線為度,移二分線左右得小暑、小寒之線。

第八時刻線。一名切線線

圖

分法、

切線之數無限,為九十度之切割兩線,皆平行無界。故今止用八十度,於本線

立成表。上查八十度得五六七,即本線作五六七平 分,次因各度數加字。

一度至十五切線正弦,微差尺上不顯可,即用正弦。

第九表心線、一名割線線

分法、

此線亦止八十度,依表查得五七五平分之,其初點 與四十五度之切線等。初點即全數故等次依本表加之。

用法一:

有正弧或角,欲求其切線、或割線,法以元圈之半徑 為底切線,線四十五度之本數為腰割線,線則以○ 度○分為腰,置尺次以設度為腰,取底為某度之切 線割線。 反之有直線又有本弧之徑,欲求。設線之 弧若干,度以半徑為度以為底,設弧之度數為腰,置 尺又設線為底,求本線上等數即設線之弧。

用法二:

表度說:以表景長短求日軌高度分。今作簡法,用切

圖

線,線凡地平上立物皆可當表,以表長為底,本線四十五度上數為腰,置尺次取景長為底,求兩腰之等數。即日軌高度分。 若用橫表法,如前,但所得度分乃日離天頂之度分也。安表法見本說。

用法三:

地平面上作日晷法,先作子午直線,卯酉橫線。令直 角相交,從交至橫線端為底,就切線,線上之八十二

圖

度半為腰,置尺次於本線七度半點內。取底為度,向卯酉線交處左右各作識。為第一時分次遞加七度半取底為度。如前遞作識為各時分。

每七度半者,如七度半、十五度,二十二度半,三十度,三十七度半,四十五度,五十二度半,六十度六,十七度半,七十五度,八十二度半。

若求刻線,則遞隔三度四十五分,而取底為度也。次 於元切線上取四十五度線四十五度之切線即全數為底割線。 初點為腰,置尺次以本地北極高度數為腰,於本線 上取底為表,長於子午卯酉兩線之交,正立之又取 北極高之餘度線為度。於子午線上從交點起,向南 得日晷。心從心向卯酉線上各時分點作線,為時線 在子午線西者,加午前字。如巳辰卯在子午線東者 加午後字,如未申酉。

日晷圖說。

圖

子午卯酉兩線相交於甲,甲酉為度以為底,以切線之八十二度半為腰,置尺遞取七度半之底,向甲左右作識。如甲乙、甲丙次取十五度線之底作第二識。

如甲丁、甲戊每識遞加七度半,每識得二刻,則丁點 為午初,戊為未初,餘點如圖。 次取甲己線上四十 五度之切線為底,割線之。初點為腰,置尺取北極高 餘度順天府約五十之割線為度。從甲向南取辛辛為心,從 心過乙丁等點作線為時刻,線又割線,上取北極高 度之線順天府約四十為表,長即甲庚也,表與面為垂線。

立表法,以表位甲為心,任作一圈次立表,表末為心,又作圈,若兩圈相合或平行則表直矣。

用法四:

先有表度,求作日晷。則以表長為底,割線上之北極 高度為腰。置尺次以極高餘度為腰,取底為度,定日 晷之心。次用元尺於切線上,取每七度半之線如前。

凡言表長以垂表為主,或垂線。

用法五:

有立面向正南,作日晷。法如前,但以北極高度求晷 心,以北極高之餘度為表長。

又平晷之子午線為此之垂線,書時刻以平晷之卯為此之酉各反之。

圖

用法六:

若立面向正東、正西。先用權線作垂線定表處。即晷心從心作橫線與垂線為直角。 若面正東於橫線下,向北作象限弧,若面正西於橫線下,向南作弧。弧上從下數北極高之餘度為界。從心過界作線為赤

道線。又以表長為底切線,線上之四十五度為腰,置

尺遞,取七度半之線,從心向外於赤道上,各作識,從 各識作線與赤道為直角。則時刻線也。其過心之線 向東晷為卯,正線向西晷為酉正線。 若欲加入節 氣線,法以表長為度,從表位甲上取乙點為表心。從 心取赤道上各時刻點為度以為底。以切線,線之四 十五度為腰,置尺,又以二十三度半為小腰,取小底 為度於各時刻線上。從赤道向左、向右各作識為冬 夏至日景所至之界。 如左圖:甲乙為卯酉正線,以

圖

表長為度,從甲取乙為表心,以切線上之四十五度為腰,甲乙為底,置尺,又以二十三度半為小腰。取小底於本線上從赤道甲向左向右各作識。即卯酉正時冬夏至之景界。 次從表心向卯酉初刻線,取赤道之交丙點為底,切線之

四十五度為腰,置尺,以二十三度半為小腰,取小底 於丙左右,各作識為本時冬夏至之景界。次於各時 線如上法,各作二至景界,訖聯之為本晷。上冬夏二 至之景線。 次作二至前後各節氣線,以節氣線之 兩至點為腰。即鶉首之次西曆為巨蟹宮以各時線上赤道至兩 至界為底。置尺,次以各節氣為小腰,取小底為度,從 各線之赤道左右作識,如前法。

第十五金線

分法用下文各分率及分體線。

置金一度、

下方所列者,先造諸色體,大小同度,權之得其輕重,之差以為比例。

置水銀一度又七十五分度之三十八;

置鉛一度又二十三分度之一十五;

置銀一度又三十一分度之二十六;

置銅二度又九分度之一;

置鐵二度又八分度之三;

置錫二度又三十七分度之一。

先定金之方立體,其重一斤為一度,本線上從心向 外任取一點為一度,即是金度。次以分體線第十點 為腰,此度為底。置尺,依各色之本率。於分體線上取 若干度分之線為底,從心取兩等腰,合於次底作點。 即某色之度點。

又法

取各率之分子,用通分法乘之。

得金四五九五九二五;

得水銀六九二四五二七;

得鉛八六二七四○○;

得銀八四三一二一二一七;

得銅九○○一四○○;

得鐵一○九一四○七五;

得鍚一一七九九○○○;

次以各率開立方求各色之根;

得金一六六弱;

得水銀一九一弱;

得鉛二○二;

得銀二○四;

得銅二一三;

得鐵二二二;

得錫二二八。

若金立方重一斤,其根一百六十六弱,用各色之根 率為邊,成立方。即與金為同類、皆為立方同重皆為一斤之體 也。

今本線用此以二二八為末點。如各率分、各色之根 數加號。

石體輕重不等,故不記其比例。

用法一

有某色某體之重。欲以他色作同類之體,而等重。求 其大小。法以所設某色某體之一邊為度以為底,以 本線本色點為腰。置尺,次以他色號點為腰,取底即 所求他體之邊。

用法二

若等體等大求其重。法以所設體之相似一邊為度 以為底,置尺於他色號點,取其底,兩底並識之。次於 分體線上,先以設體之重數為腰。以先設體之底為 底。置尺,以次得他體之底為底,進退求相等數為腰, 即他體之重。

用法三

有異類之體,求其比例。先依更體線通為同類次,如 前法。


PD-icon.svg 本作品在全世界都属于公有领域,因为作者逝世已经超过100年,并且于1923年1月1日之前出版。