大統厯志 (四庫全書本)/卷7
大統厯志 卷七 |
欽定四庫全書
大統厯志卷七
宣城梅文鼎撰
日食通軌〈按軌者法也算月食者以此為通行必用之法也〉
録各有食之朔下算
經朔全分 盈縮厯全分 盈縮差全分遲疾厯全分 遲疾限數 遲疾差全分加減差全分 定朔全分 交泛全分
按有食之朔即所推其朔交汎日入食限者也故其下所有數如經朔等皆全録之以為算日食用也葢數以倚數參伍相求此所録皆母數原定朔時俱已推定更不必復算只全録取用也月食倣此
推定入遲疾厯法
置所推或遲厯或疾厯全分以本日下加減差加者加之減者減之得為定入遲疾厯分也
按原所推遲疾厯是經朔下者今以加減差加減之則是定朔下遲疾厯也
推定入遲疾厯限數法
置所推定入遲疾厯全分依朔下限數法推之得為定入遲疾限數也
按定朔遲疾厯既不同經朔則其入轉限數亦異其月行遲疾行度之數亦異故復定之
推定限行度法
視所推定入遲疾限與太陰立成相同限下遲疾行度遲用遲行度疾用疾行度內減去日行分八分二十秒〈按此於度下二位減〉而得為定限行度也
按定限行度者即定朔所入限月行遲疾之數也內減去八分二十秒者月行一限日行八百二十分於度下分即八分二十秒也葢日月並行於天皆自西而東其立成遲疾行度月所行於天之數此所推定限行度乃月行所過於日之數假如一限月行一度而日已行八分二十秒則月之合日而過只有九十一分八十秒也
推日出入半晝分法
視有食之朔下是盈初盈末者大餘若干用立成內冬至後相同積日下日出入半晝分全録之是縮初縮末者大餘若干用立成內夏至後相同積日下日出入半晝分全録之
按日出入者所以定帶食也以全晝之分半之為半晝分所以定午也只用經朔盈縮厯不加減者所差半日而極無甚差數也據此則日出入立成當亦如盈縮立成法皆始於二至順逆推之今立成只是順求故其圖為二也若如盈初縮末縮初盈末法則以二圖為四圖
推嵗前冬至天正赤道宿次度分法
置嵗差一分五十秒〈定二子〉為實以所距積年減一算〈十定一百定二〉為法乗之〈言十定一〉得數〈定有四子為度〉以度率十度相減餘為赤道箕宿度分也
按嵗差者日行黃道之度所每嵗遷徙不常者也堯時冬至在虛一度至元冬至在箕十度漸差而西也嵗差一分五十秒者凡六十六年有八月而差一度也原至元冬至在箕十度至今所求年又差㡬度故以距算乗嵗差而得所差之數以減其宿十度便知退在箕宿㡬度也嵗差之度自東而西其數為退故用減也
推嵗前冬至天正黃道宿次度分法
置所推赤道度分內減去黃道立成相同積度下第三格積度全餘分〈有十定三子有分定二子十秒定一子〉為實以下同度下第四格度率為法除之〈不去子只不滿法去一子〉得數〈定有三子為十分二子為單分一子為十秒於十分前一位加積度〉萬位前加入同度第一格積度得為天正黃道箕宿度分也
按赤道之勢平黃道較赤道其勢有斜有平當其斜則宿度多於赤道當其平則宿度少於赤道故赤道終古不變而黃道宿度每嵗不同要之以二至平二分斜則無不同也所積赤道度即箕宿度乃逆推今冬至所距箕宿初度之數也於是以第三格積度減之便知此所距箕宿度已滿黃道有㡬度也其減不盡者以第四格度率除之便知此未滿於黃道一度者在黃道為㡬十㡬分也於是加入第一格積度便知今冬至距箕初度之黃道凡有㡬度㡬十㡬分也第三格積度至後赤道也第一格積度至後黃道也凡至後赤道積㡬度㡬十㡬分於黃道為㡬度整數也第二格度率至後黃道也第四格度率至後赤道也凡至後赤道率一度零㡬分於黃道為一度整數葢至前後黃道平故其數少於赤道如此也原法以黃道度率乗減餘然後以赤道度率除之今黃道率是一度乗過仍是本位故不用乗只用除也惟其不用乗故除亦不去子只不滿法去一子也
黃道立成
按此圖原有九十一度以二至二分為端葢二分之黃道與赤道相交故其度斜徑而每度之數加多於赤道二至之黃道與赤道相逺故其度平直而每度之數加少於赤道此所存十度乃至後者故其黃道之率皆少於赤道也只用十度者因箕宿只十度故也此算家等按暫時省力之法葢至後黃赤道率與至前則同此圖原是順推今則用之逆溯其理同其數同也
推交常度法
置有交食之交汎全分〈十日定五子單日定四子空日定三子空千定二子空百定一子空十不定子〉以月平行一十三度三六八七五〈定一〉為法乗之〈言十定一乗過定有四子為單度五子為十度六子為百度〉即得所推交常度分也按交常度者以常數言之合朔去交凡有若干度也推交定度法
置所推交常度全分盈加縮減其朔下盈縮差度分得為交定度分也如遇交常度數少不及減縮差者加交終度三百六十三度七九三四一九減之餘為交定度分也遇滿交終度去之
按交定度者太陽所在距黃道白道相交之數凡㡬也以太陽為主故只用盈縮差加減之而得也月食求闇虛即日所衝是亦以日為主也如遇交常度數少不及減縮差者是以常數言之雖已在交後計日行盈縮則仍在交前故加入交終度減之即仍作交前算也 愚意交定度當以定朔入盈縮厯求之盈縮差分以加減交常度於理較親也存之以質高明推日食在正交中交度
視所推交定度全分如在七度已下三百四十二度已上者為食在正交也如在一百七十五度已上二百○二度已下者為食在中交也
按正交者月自陰厯入陽厯交之始也中交者月自陽厯復入陰厯交之中也交終之度於此始即於此終故為正交也交終之度於此適半故為中交也七度已下三百四十二度已上者正交食限陽厯距交初七度陰厯距交終二十一度而止也一百七十五度者陽厯距交中亦七度而止為食限二百○二分者陰厯距交中亦二十一度而止為食限也〈詳見日月食限條〉
推中前中後分法
視定朔小餘如在半日周五千分已下者就置五千分內減去定朔小餘而餘為中前分也如在半日周已上者就於定朔小餘內減去半日周餘為中後分也按中前是以午逆推前所距分也故以小餘減半日周中後是以午順求後所距分也故以半日周減小餘順數逆推皆自午正起算也
推時差分法
置半日周內減去所推或中前或中後分餘〈千定三百定二〉為實復以中前或中後〈千三百二定之〉為法乗之〈言十定一〉得數又以九十六分〈去三子○按九十六分宜去一子今去三子者經所謂退二位也〉為法除之〈不滿法去一子除過定有二子為百分一子為十分〉得為時差分也中前為減差中後為加差
按時差分者食甚之時刻有進退於定朔者也葢經朔本有一定之期既以月遲疾日盈縮加減之為定朔矣而猶有差者則以合朔加時有中前中後之不同者何也大約日在外月在內故能掩之人又在月內故見其掩而有食當其正相當一度謂之食甚如其合朔午正則以人當月以月當日相當繩直故無所差在午前以至於邜則漸差而早假如定朔夘正一刻日月合在一度是日月合朔本等時刻也人自地上觀之則不待其月之至於此度也當其夘初初刻月未及日一度時已見其合於日是差而早六刻有竒也若在午後以至於酉則漸差而遲假如定朔酉正一刻日月合在一度是日月合朔本等時刻也人自地上觀之則月雖已至此度尚未見其合也直至戌初一刻月行過於日將一度時始見其合於日是差而遲六刻有竒也其自夘而辰而已所差漸少至午正則復於無差也其自午而未而申積差以漸而多至酉則差而極於六刻有竒也葢天體至圓其行至健運乎四虛地在其中為氣所團結而不散若卵之有黃夫卵既圓矣黃安得獨方故地之方者其德其體則不必正方如碁局也夫日月並附天行而月在日下當其合時去日尚不知有㡬許人自地上左右窺之與天心所見不同故日月平合在夘酉皆不能見所見食甚日稍在下月稍在上斜所當差近一度在月平行為六百餘分惟午則自下仰觀所見正當繩直與在左右旁視者異故無差也昔人常雲人能凌倒景以瞰日月則晦月之表光應如望吾亦云使人能逐景而行與日相偕則舉頭所見常如在午又使地如琉璃光人居其最中央旋而觀日八靣皆平時差之法可以不設矣是其所差不問盈縮遲疾而只在本日之加時故曰時差
推食甚定分法
視時差分如是中前分推得者置定朔小餘內減去時差分餘為食甚定分也如是中後分推得者置定朔小餘內加入時差分共得為食甚定分也滿日周去之至入盈縮度再加之
按食甚食而甚也食甚分是自虧至復之中日月正相當於一度之時刻也中前減小餘者差而早也中後加小餘者差而遲也若夜刻不算者恐無滿日周去之之理末二句疑有誤
推距午定分法
置所推中前或中後分內加入時差分共得為距午定分也
按定距午定分是食甚時刻距午正之數也食甚以時差加減距午則不減只加者葢食甚原是順推故有加減距午分則一自午順推一自午逆溯總是差而漸逺於午正故也
推食甚入盈縮定度法
置前推或盈厯或縮厯初末全分加入定朔大餘及食甚定分內減去經朔全分餘為食甚入盈縮厯定度分也
按原推盈縮歴是經朔下者故以定朔大餘及食甚分加之減去經朔全分如以經朔大小餘加減作食甚大小餘故即得食甚所入盈縮厯數也
推食甚入盈縮差度法
置所推食甚盈厯或縮厯全分減去大餘依朔下盈縮差法推入得食甚入盈縮差度分也如遇末限亦用反減半嵗周之數數止秒
按食甚盈縮厯既異經朔則其所積盈縮之差亦不同故復求也
推食甚入盈縮厯行定度法
置食甚入盈縮厯全分以萬為度內盈加縮減其所推食甚入盈縮差得為食甚入盈縮厯行定度分也〈末限不用數止秒〉
按凡盈厯若干日即是常數日行距冬至宿之度數也凡縮厯若干日即是常數日行距夏至宿之度數也以其差加減之即得所推食甚日躔距二至宿之度數也凡用末限者所以紀其差是逆從二至推至二分其差整齊易知也今不用末限者所以積其度是順從冬至數至夏至從夏至數至冬至也
推南北泛差度法
視所推食甚入盈縮厯行定度如在周天象限九十一度三一四三七五已下者為初限也如在已上者置半嵗周內減去行定度餘為末限也或得初限或得末限俱自相乗之〈初末限有十度上下各定三子單度各定二子言十加定一子〉得數以一千八百七十度〈去三子〉為法除之〈不滿法去一子除過定有四子為度三子為十分○按上下各定二子則四子矣故四子為度〉復置四度四十六分〈按四度四十六分者即周天象限自乗復以一千八百七十度除之者〉內減去得數條為南北汎差度分也
推南北定差度法
置所推南北泛差全分〈度定四子十分定三〉以所推距午定分〈千定三子百定二子〉為法乗之〈言十定一〉得數復以其所録半晝分〈去三子〉為法除之〈不滿法去一子除過定有四子為度三子為十分也〉仍置泛差減去得數餘為南北定差也若遇泛差數少不及減者反減之而得也又視其盈縮厯及所推正交中交限度如是盈初縮末者食在正交為減差中交為加差也如是縮初盈末者食在正交為加差中交為減差也若遇反減汎差者應加作減應減作加不可忽畧也
按南北差者古人所謂氣差也易之曰南北所以著其差之理也葢日行盈初縮末限則在赤道南其逺於赤道也至二十三度九十分日行縮初盈末限則在赤道北其逺於赤道也亦二十三度九十分日之行天在月之上而高故月道與黃道相交之度有此差數以南北而殊也假如盈初縮末限一日空日間日行赤道外極南去人極逺去地益近日道所高於月道之中間人皆以旁觀之易得而見故月道之出黃道而南也較常期〈所謂常期皆主春秋分日道而言即所定中國正交度中交度也〉早四度有竒其入黃道而北也較常期遲四度有竒由是以漸而至於盈初縮末八十八日行天漸滿一象限之時黃道之在赤道南者去赤道以漸而近去地之數以漸而逺其日高月下相去之數人所從旁見者以漸而少故其所差四度有竒以漸而殺也又如縮初盈末限一日空日間日行赤道內極北去人益近去地益逺日道所高於月道之中間人仰靣視之難得而見故月道之出黃道南而為正交也較常期遲四度有竒其入黃道北而為中交也較常期早四度有竒由是以漸而至於縮初盈末九十三日行天漸滿一象限之時黃道之在赤道北者去赤道以漸而近去地之數亦以漸而近其日高月下相懸之數人所從旁見者又以漸而多故其所差四度有竒亦以漸而殺也四度四十六分者據其極差者言也以得數減之便是今所有差也然此皆據午地而言故以距午分乗之以半晝分除之便知今距午之地應分得差數凡㡬許而今已距午㡬許則此所有之差已不可用故以減原得汎差而知其尚餘㡬許之差為定差也葢於天則冬至夏至之黃道為南北於地則加時在正子午為南北今泛差之數近二至則多近二分則少是以天之南北而差定差之數近午正則多近日出沒時刻則少是以加時之南北而差也故曰南北差○月自黃道北出黃道南謂之正交即經所謂交前陰厯交後陽厯也月自黃道南入黃道北謂之中交即經所謂交後陰厯交前陽厯也○其南北泛差不及減反減者此帶食出入方有之何也此必是食甚定分在日入分已上或曰出分已下則其距午定分多於半晝分故乗除後得數亦多於泛差也不則以多除以少乗其數且不能與泛差相等況能多於泛差也愚故斷其為帶食也泛差數少不及減是距午定分已過於半晝是在夜刻故反筭其距子之數夫距子與距午其盈縮南北逺近並旁觀仰視之理正相反故加者減之減者加之以為定差也
推東西泛差度法
置所推食甚入盈縮厯行定度就為初限也去減半嵗周餘為末限也以初末二限互相乗之〈百度定四子十度定三子言十定一是也〉得數復以一千八百七十度〈去三子〉為法除之〈不滿法去一子除過定有四子為度三子為十分〉即得所推東西泛差也
推東西定差度法
置所推東西泛差全分〈度定四子千定三子〉以所推距午定分〈千定三子百定二子〉為法乗之〈言十定一〉得數以二千五百度〈去三子〉為法除之〈不滿法去一子除過定有四子為度三子為十分〉視所推如在東西泛差以下者就為東西定差度分也如在已上者倍其泛差內減去得數餘為東西定差度分也 又視其盈縮厯及中前中後分與正交中交限度若是盈厯中前縮厯中後者正交為減差中交為加差也若是盈厯中後縮厯中前者正交為加差中交為減差也
按東西差即古所謂刻差也易其名曰東西者其差只在東西也於天則近二分之黃道為東西於地則近夘酉之時刻為東西葢日行在二至前後其勢平直日行在二分前後則其黃道與赤道縱橫交加其勢斜徑當其斜徑加時又當夘酉則有差也假如春分日在盈厯九十餘度其黃道之交於赤道自南而北勢甚斜徑若加時中前則是赤道倚而黃道橫也加時中後則是赤道倚而黃道縱也又如秋分日在縮厯九十餘度其黃道之交於赤道自北而南勢甚斜徑若加時中前則是赤道倚而黃道縱與盈厯中後同也加時中後則是赤道倚而黃道橫與盈厯中前同也黃道縱立於邜酉月道之出入亦從而縱正靣視之繩直相當其日內月外相去之中間人所見者少意與南北差縮初盈末正在人頂者同也故月道之出黃道南而為正交也較常期遲四度有竒其入黃道北而為中交也較常期早四度有竒此盈厯中後縮厯中前皆於正交以差加中交以差減也黃道橫偃於夘酉月道之出入亦從而橫人在赤道之北斜而望之其日內月外相去之中間皆得而見意與南北差盈初縮末橫偃南上漸近於地者同也故月道之出黃道南而為正交也較常期早四度有竒其入黃道北而為中交也較常期遲四度有竒此盈厯中前縮厯中後皆於正交以差減中交以差加也若盈縮厯當二分加時又在夘酉則其差之極四度有竒迨至二分前後黃道之斜徑以漸而平故其差亦以漸而少由是而至於二至黃道之斜徑依平而差亦復於平故曰二至無刻差也若加時不在夘酉則雖二分之黃道其差卻與他氣不殊葢其斜徑之勢亦以漸而平故也假如二分加時辰巳之間其定差則正與四立泛差等漸而至於午中則其差亦漸而復於平是其所差只在東西故曰東西差凡東西泛差近二分多是以天之東西而差也其定差以加時夘酉而多是以地之東西而差也以距午分乗之者距夘酉之數也以二千五百除之者日周四分之一乃夘酉距午之數也葢此所謂泛差乃距午二千五百分時所有之差也乗除後得數若多於泛差是食甚距午分其數亦多於日周四分之一其加時乃在夘前酉後也夘前酉後之差於正夘酉者其數正與夘後酉前等故倍泛差減得數即為定差也凡差於南北者復於東西差於東西者復於南北並二差加減數總無過四度四十六分以是為交度進退之極也葢原所謂正交中交限各損陰厯六度餘為陽厯者乃是據中國地勢所差於南戴赤道之下者言人在赤道之北故所見黃道交處皆差而近北六度餘此常數也若黃道在冬至橫於南上去人益逺故其交處差而北者又四度餘而極是共差十度餘矣若黃道在夏至去人反近正在中國人頂故其交處原差而北者乃復而南亦四度餘而極是只差一度餘矣此南北差之理據午上言也若移而至日岀入時則其橫於南上者已斜縱於夘酉其正當人頂者巳橫斜於夘酉所見差度以漸而平如常數故南北差近午多近日出沒則少也若黃道在春分而加時夘黃道在秋分而加時酉其勢皆橫偃於東西而與地相依故其交處益差而北又四度餘而極是亦共差十度餘矣若黃道在春分而加時酉黃道在秋分而加時夘其勢皆縱立於東西而與人相當故其交處原差而北者亦皆復而南四度餘而極是亦只差一度餘矣此東西泛差之理據夘酉而言也若移而至午則其橫偃於夘酉者反斜縱於午上其縱立於夘酉者反橫斜於午上所見差度自以漸而平如常數故東西差近夘酉多近午則少也假使人能正當赤道之下則兩極平見相望子午赤道平分界平夘酉則凡正交只在交終中交只在交中其氣刻之差減正交加中交者則差而北其加正交減中交者則差而南當亦各四度有竒也今中國地勢則正在赤道之北故所見赤道皆斜倚於人之南其所見正交中交度常數亦皆因其赤道之斜倚者而斷惟其黃道交在四五之宿加時在巽坤之維則黃道之勢正自斜倚適如赤道之理而南北東西之差皆少與常數相依若黃道橫則其勢視赤道加偃故正交中交之度益差而北若黃道縱則其勢視赤道反直㡬有類於南戴日下之赤道故正交中交之度雖曰復差而南其實乃復於無差也凡縮初盈末而加時午盈厯而加時中後縮厯而加時中前皆黃道縱之類也其縮初盈末當午雖橫在天心然東西視之則亦縱也凡盈初縮末而加時午盈厯而加時中前縮厯而加時中後皆黃道橫之類也其冬夏至黃道當日出入其二分黃道當子皆黃道斜倚之類也
推日食在正交中交定限度
視所推日食在正交中交限度如食在正交者置正交度三百五十七度六十四分在中交者置中交度一百八十八度○五分俱以所推南北東西定差是加者加之減者減之即為所推正交中交定限度分也
按正交本在交終三百六十三度七十九分今曰三百五十七度六十四分者於陰厯本數內損六度餘為陽厯也中交本在交中一百八十一度八十九分今曰一百八十八度○五分者於陽厯本數外増六度餘侵入陰厯也葢黃道之於月道如大圓輪包小圓輪月在日內人又在月內而稍北日月交其南人自北斜而望之其月日相去中間獨得而見故其交處皆差而北也惟其交處差而近北故其交而南也早六度其交而北也遲六度此據中國地勢言在授時立法當只是據大都北極高度斷之也若迤而漸南至於戴日之下所差當以漸而復其本度若迤而漸北以至於戴極之下所差當不知更有㡬許也又按此正交中交度増損六度者只是地勢使然巳為常數其因時而差者又有南北東西二差於是復以加之減之而後乃今所推正交中交之度可得而定而後乃今交前交後陰陽厯可得而定矣
推日食入陰陽厯去交前交後度法
視所推交定度若在正交定限度已下者就於定限度內減去交定度餘為陰厯交前度也若在正交定限度已上者於交定度內減去正交定限度餘為陽厯交後度也又視其交定度若在中交定限度已下者就於定限度內減去交定度餘為陽厯交前度也若在中交定限度已上者於交定度內減去中交定限度餘為陰厯交後度也
按若交定度在七度已下者數雖在正交定限度下而實則為陽厯交後度也法當置交定度加入交終度復減去正交定限度餘為陽厯交後度也〈勿菴補〉按凡交定度在正交後中交前者陽厯也其在正交前中交後者陰厯也若以東西南北差定之而正交度有加中交度有減者是陽厯變為陰厯也其正交度有減中交度有加者是陰厯變為陽厯也正交陽變陰中交陰變陽是交後變為交前也正交陰變陽中交陽變陰是交前變為中後也故必以所推正交中交定限度為則與交定度相較而得合朔日躔距交前後的數也凡以交定度去減正交中交定限度者為交前是逆從交處數來也其於交定度內減去正交中交定限度者為交後是順從交處數去也又按交定度在七度已下食在正交也若以減正交定限度其所餘者當在三百五十度內外為陰厯交前度也勿菴曰非也若然則凡正交七度已下者永不入食限不必布筭矣況所謂陰陽厯者自正交中交而斷〈正交後為陽中交後為陰〉所謂交前後者皆附近正交中交前後而斷〈正交後為陽厯交後正交前為陰厯交前中交後為陰厯交後中交前為陽厯交前〉通交度分為陰陽厯陰陽厯又各分前後安得有陰厯交前度乃多至三百五十餘度者乎此必無之理亦必不可通之數然則何以通之曰有法焉凡交定度在七度已下是其數不特在正交度下並在中交度下也然而又與中交數逺並亦不得減中交為交前也夫在中交數下是陽厯非陰厯也不在交前是交後也夫陽厯交後度法當置交定度內減去正交定限度而此交定度數少不及減故必加入交終度而後可以減之也加入交終度減之則陽厯交後之度復其本位也則凡距交七度已下者皆得入陽食之限也然則厯經何以不雲通軌何以闕載也曰是偶爾之遺也或姑畧之以俟人之變通也或傳之久而失其真所謂史有闕文也夫夏五傳疑三豕徴信各行其是而已為其恐誤後學也故訂之然而古人不作吾亦安所取正乎可為長歎
推日食分秒法
視日食入陰陽厯交前交後度是陰者置陰食限八度是陽者置陽食限六度皆減去陰厯或陽厯交前交後度餘〈度定四十定三〉為實各以其定法是陰者置八十分陽者置六十分去為法約之〈不滿法去一子所定有二子為單分一子為十秒〉即得所推日食分秒也如陰陽食限不及減交前交後度者皆為不食也
按陰食限八度者陰厯距交八度內有食也陽食限六度者陽厯距交六度內有食也凡合朔若正當交度其食十分漸離其處食亦漸少假如陽厯距交一度二十分則於食十分內減二分只食八分也又如陰厯距交二度四十分則於食十分內減三分只食七分也故合置陰陽食限以距交前後度減之即是於食十分內減去若干分秒也其減不盡者則正是今所推合食之數故各以定法除之而得也凡陰陽定法皆十分其食限之一也如食限不及減為不食者是距交前後之度多於陰陽食限其去交甚逺不能相掩斷為不食也
推日食定用分法
置日食分二十分內減去推得日食分秒餘〈十分定三單分定二〉為實即以日食分秒〈單分定二〉為法乗之〈言十定一所定有六子為百分五子為十分〉即為所推開方積也立天元一於單微之下依平方法開之得為開方數〈有十定一〉復以五千七百四十分〈定五〉為法乗開方數〈言十定一〉得數又以所推定限行度〈去四子空度去三子〉為法除之〈不滿法去一子所定有二子為百分一子為十分〉即為所推定用分也
按定用分者日食虧初復末中距食甚所定用之時刻也凡日食若干分則其所經厯凡有若干刻食分深者厯時久以月所行之白道長也食分淺者厯時暫以月所行之白道短也今所求開方之數即自虧至甚或自甚至復月行白道之率也
月食只十分今用二十分者何也日月各徑十分其半徑五分凡兩圓相切則兩半徑聨為一直線正得十分為兩心之距以此兩心之距為半徑從太陽心為心運規作大圓其外周各距日之邊五分為日月相切時太陰心所到之界其大圓全徑正得二十分也
以日食分秒相減相乗何也此句股術中較求股法也依前所論初虧時兩圓相切其兩心之距十分此大圓之半徑常為勾股之食甚時兩心之距如勾而太陰心侵入大圓邊之數如勾較自虧至甚太陰心所行白道如股而太陰心侵入大圓邊之數與食分正同葢月邊掩日一分則月心亦移進一分也故即以日食分秒為勾較與大圓全徑二十分相減其餘即為勾和和較相乗為開方積即股實也其開方數即股亦即自虧至甚月心所行之白道矣其自食甚至復光理同
五千七百四十分乗者何也先求日食分秒及勾股開方等率皆就日體分為十分其實日體不滿一度大約為十之七耳五千七百四十者七因八百二十也月行一限得八百二十分其十之七則五百七十四分矣故以五百七十四分乗開方數為實以定限行度除之為定用分之時刻也
一率 定限行度〈為本限月行遲疾之定率〉
二率 五百七十四分〈為十分八百二十而用其七〉
三率 開方數〈即自虧至甚或自甚至復月所行白道〉
四率 定用分〈即自虧至甚甚至復月行所厯之時刻〉
初虧時兩心之距為即大圓二十分平徑 食甚時兩心之距為勾 食甚時月心侵入圓界三分為句較自虧至甚月心所行白道為股甚至復亦仝此以月在陽厯日食三分為例餘可倣推
〈五千宜定三子㑹定五子者因此所謂分
乃度下二位分故加定二子也立大元一
子單㣲之下者如一子於實之微下一位
也所以然者前所推數皆止於秒秒以下
所棄者尚多故此於開積加之以湊平方
整齊也月食倣此〉
推初虧復圓分法
置所推食甚定分內減去定用分為初虧分不及減加日周〈一萬〉減之復置食甚定分加入定用分為復圓分滿日周去之時刻依合朔法推之
按食甚者食之甚食之中也日月正相當於一度也初虧者虧之初食之始也月始進而掩日也復圓者復於圎食之終也月已掩日而退畢也凡言分者皆時刻也葢初虧在食甚前㡬刻故減小餘復圓在食甚後㡬刻故加小餘初虧距食甚時刻正與食甚距復圓數等故皆以定用分加減之也月食倣此又按據加日周減滿日周去二語定用分當不止此數也
推日食起復方位法
視所推日食入陰陽厯如是陽厯者初起西南甚於正南復圓於東南也如是陰厯者初起西北甚於正北復圓於東北也若食在八分已上者無論陰陽厯皆初起正西復圎於正東也
按日食起復方位主日體言之即人所見日之上下左右也以午位言則左為東右為西上為北下為南也日食入陰陽厯者主月道言之月在日道南為陽厯月在日道北為陰厯也如是陽厯食是月在日南掩而過故食起西南甚於正南復於東南也如是陰厯食是月在日北掩而過故食起西北甚於正北復於東北也其食在八分已上者是月與日相當一度正相掩而過故食起正西復於正東其食甚時正相掩覆而無南北不言可知也凡日月行天並自西而東日速月遲其有食也皆日先在東月自西追而及之既相及矣則又行而過於日出於日東故日食虧初皆在西復末皆在東也○又按厯經雲此所定起復方位皆自午地言之其餘處則更當臨時消息也推帶食分法
視朔下盈縮厯與太陽立成同日之日出入分如在初虧分已上食甚分〈按食甚當作復圓〉已下為帶食之分也若是食在晨刻者置日出分昏刻者置日入分皆與食甚分相減餘為帶食差也置帶食差〈百定六十定五〉以所推日食分秒〈十定五單定四〉為法乗之〈言十定一〉得數以所推定用分〈百去六子〉為法除之〈不滿法去一子所定有五子為十分四子為單分三子為十秒〉得數去減所推日食分秒餘上下四處皆為帶食也已見未見之分也按帶食分者日出入時所見食分進退之數也假如日出分在初虧分已上是初虧在日未出前但見食甚不見虧初也日入分在初虧分已上是食甚在日入後但見虧初不見食甚也又如日出分在復圎分已下是食甚在日未出前不見食甚但見復末也日入分在復圓分已下是復圓在日入後不見復末但見食甚也見食甚不見虧初是食在未出已有若干尚有見食若干帶之而出甚食為進也見初虧不見食甚是食在未入見有若干尚有不見食若干帶之而入其食亦為進也不見食甚但見復末是食在未出前已復若干尚有見復光若干帶之而出其食為退也不見復末但見食甚是食在未入前見復若干尚有未復光若干帶之而入其食亦為退也凡此日出入所帶進退分秒何以知之則視其帶食而出為晨刻者置日出分其帶食而入為昏刻者置日入分皆以食甚分與之相減而得帶食之差也假如日出分在初虧分以上其食甚分又在日出分已上則以日出分減其食甚分其減不盡者則是日出已後距食甚之時刻也若日入分在初虧分已上其食甚分又在日入分已上則以日入分減其食甚分其減不盡者則是日入已後距食甚之時刻也又如日出分在復圓分已下其食甚分又在日出分已下則於日出分內減去食甚分其減不盡者則是日出以前距食甚之時刻也若日入分在復圓分已下其食甚分又在日入分已下則於日入分內減去食甚分其減不盡者則是日入已前距食甚之時刻也凡此帶食差分用乗日食分秒又以定用分除之便知日出入時所距食甚時刻在定用分全數內占得㡬許即知日出入時所帶食分於日食分秒全數內占得㡬許也以得數減食分所餘分秒即是日出入前距虧初已過食分或日出入後距復末未見食分也上下兩處者得數與減餘兩處之數也見未見之分即已復未復已食未食如後二條所列也
推日有𢃄食例
置日出入分內減去食甚分謂之已復光未復光將所推帶食分録於前
晨〈日未出已復光若干日已出見復光若干〉 昏〈日未入見復光若干日已入未復光若干〉
置食甚分內減去日出入分謂之見食不見食將所推帶食分録於後
晨〈日未出已食若干日已出見食若干〉 昏〈日未入見食若干日已入不見食若干〉按置日出入分內減去食甚分者其日出入分皆在復圓分已下也故謂之已復光未復光假如日食甚五分在日出入前其帶食三分以之相減尚餘二分若在晨刻是日未出前已復光三分日已出後見復光二分也若在昏刻是日未入前見復光三分日已入後未復光二分也此二端帶食分皆是已復光數故録於前也其以帶食分減之而餘者則是未復光數故録於𢃄食之後也置食甚分內減去日出入分者其日出入分皆在初虧分已上也故謂之見食不見食假如日食甚五分在日出入後其𢃄食三分以之相減尚餘二分若在晨刻是日未出前已食二分日已出後見食三分也若在昏刻是日未入前見食二分日已食後不見食三分也此二端帶食分皆是未食數故録於後也其以帶食分減之而餘者則是已食數故録於𢃄食之前也月食倣此但以日之昏為月之晨以日之晨為月之昏葢日出於晨入於昏月出於昏入於晨也其餘皆同
推黃道定積度法
置所推食甚入盈縮厯行定度如是盈厯者內加入天正黃道箕宿度共得為黃道定積度也如是縮厯者內加入半嵗周及天正箕宿黃道度共得為黃道定積度也
按黃道定積度者逆計食甚日躔度距天正冬至日躔宿度積數也盈厯加入天正黃道箕度者是逆從天正冬至所躔宿初度積筭起也縮厯復加半嵗周者縮厯本數是以夏至度起筭今加入半嵗周又加入天正箕宿度是變而加盈厯亦以天正冬至箕宿初度起筭也所得定積度即是今所躔宿度與箕宿初度相距逺近之數也
推食甚日躔黃道宿次度法
置所推黃道定積度無論盈縮厯皆以黃道各宿次積度鈐挨及減之餘為食甚日躔黃道某宿次度分也按所推黃道定積度無問盈縮皆是今食甚躔度前距箕宿初度之積數也然尚未知其為黃道何宿度也故以黃道各宿積度鈐取其相挨及者減之其減去者是今積度內已滿其宿之度日躔已過此宿斷為前宿也其不及減而餘者則是前宿筭外所餘度分也是日躔正在此宿中未過故其積度亦未滿當即以所減筭外之度分斷為食甚日躔某宿㡬度㡬分也假如食甚定積十度則以箕宿積度九度五九減之餘○度四十一分為箕宿筭外餘數斷為食甚日躔黃道斗宿初度四十一分也餘倣此
按黃道積度鈐皆自箕初度積至其宿垜積之數也假如日躔斗二十三度四七加入箕宿九度五九則已共積得三十三度○六也又如日躔牛六度九十分加入斗二十三度四七又加入箕九度五九共積得三十九度九六也餘倣此
又按凡言鈐者皆豫將所筭之數並其已前之數朶積而成以便臨筭取用意同立成也雖然黃道不可以立鈐筭者當知黃道度之所由生則可以斷其是非矣葢黃道積度生於其宿黃道度各宿黃道度皆生於赤道赤道三百六十五度二五七五而其各宿度數不同者則以二至二分所躔不同也黃道近二至則其度視赤道損而少黃道近二分則其度視赤道益而多葢赤道平分天腹適當二極之中所紀之度故終古而不易黃道不然其冬至則近南極在赤道外二十三度九十分其夏至則近北極在赤道內亦二十三度九十分其自南而北自赤道外而入於其內也則交於春分之宿其自北而南自赤道內而出於其外也則交於秋分之宿交則斜所占分數多此處占多則二至之黃道所占數少理勢然也黃道之損益既係於分至分至既以嵗而差黃道積度是必毎嵗不同古人則既言之矣此所載者猶據授時厯經所測黃道之度乃至元辛巳一年之數也上考下求數十年間則皆有所不合況距今三百八十餘筭積差尤多安得海制此鈐以盡古今之無窮乎今仍以授時厯經黃赤道差法求得天啟辛酉年黃道積度如左
依授時厯經求得天啟辛酉年黃道積度
天正冬至赤道箕宿四度九○
赤道四象積度
右夏至後一象之度
<子部,天文算法類,推步之屬,大統歷志,卷七>
<子部,天文算法類,推步之屬,大統歷志,卷七>
<子部,天文算法類,推步之屬,大統歷志,卷七>
已上度鈐俱據辛酉嵗差所在歩定俟嵗差移一度時再改歩之又按厯經有増周天加嵗差法因前所推俱依通軌故仍之
大統厯志卷七
Public domainPublic domainfalsefalse